-
Notifications
You must be signed in to change notification settings - Fork 0
/
a00_utils_and_constants.py
302 lines (248 loc) · 14.5 KB
/
a00_utils_and_constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# coding: utf-8
__author__ = 'ZFTurbo: https://kaggle.com/zfturbo'
import numpy as np
import gzip
import pickle
import os
import glob
import time
import cv2
import datetime
import pandas as pd
from collections import Counter, defaultdict
import random
import shutil
import operator
# import pyvips
from PIL import Image
import platform
import json
if platform.processor() == 'Intel64 Family 6 Model 79 Stepping 1, GenuineIntel':
DATASET_PATH = 'E:/Projects_M2/2018_07_Google_Open_Images/input/'
else:
DATASET_PATH = 'D:/Projects/2018_07_Google_Open_Images/input/'
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) + '/'
INPUT_PATH = ROOT_PATH + 'input/'
OUTPUT_PATH = ROOT_PATH + 'output/'
MODELS_PATH = ROOT_PATH + 'models/'
SUBM_PATH = ROOT_PATH + 'subm/'
# https://storage.googleapis.com/openimages/challenge_2018/bbox_labels_500_hierarchy_visualizer/circle.html
LEVEL_1_LABELS = ['Accordion', 'Adhesive tape', 'Airplane', 'Alarm clock', 'Alpaca', 'Ambulance', 'Ant', 'Antelope',
'Apple', 'Artichoke', 'Asparagus', 'Backpack', 'Bagel', 'Balloon', 'Banana', 'Barge', 'Barrel',
'Baseball bat', 'Baseball glove', 'Bat', 'Bathroom cabinet', 'Bathtub', 'Beaker', 'Bee', 'Beehive',
'Beer', 'Bell pepper', 'Belt', 'Bench', 'Bicycle', 'Bicycle helmet', 'Bicycle wheel', 'Bidet',
'Billboard', 'Billiard table', 'Binoculars', 'Blender', 'Blue jay', 'Book', 'Bookcase', 'Boot',
'Bottle', 'Bow and arrow', 'Bowl', 'Box', 'Boy', 'Brassiere', 'Bread', 'Briefcase', 'Broccoli',
'Bronze sculpture', 'Brown bear', 'Bull', 'Burrito', 'Bus', 'Bust', 'Butterfly', 'Cabbage',
'Cabinetry', 'Cake', 'Cake stand', 'Camel', 'Camera', 'Canary', 'Candle', 'Candy', 'Cannon',
'Canoe', 'Carrot', 'Cart', 'Castle', 'Cat', 'Caterpillar', 'Cattle', 'Ceiling fan', 'Cello',
'Centipede', 'Chair', 'Cheetah', 'Chest of drawers', 'Chicken', 'Chopsticks', 'Christmas tree',
'Coat', 'Cocktail', 'Coconut', 'Coffee', 'Coffee cup', 'Coffee table', 'Coffeemaker', 'Coin',
'Common fig', 'Computer keyboard', 'Computer monitor', 'Computer mouse', 'Convenience store',
'Cookie', 'Corded phone', 'Countertop', 'Cowboy hat', 'Crab', 'Cricket ball', 'Crocodile',
'Croissant', 'Crown', 'Crutch', 'Cucumber', 'Cupboard', 'Curtain', 'Cutting board', 'Dagger',
'Deer', 'Desk', 'Dice', 'Digital clock', 'Dinosaur', 'Dog', 'Dog bed', 'Doll', 'Dolphin',
'Door', 'Door handle', 'Doughnut', 'Dragonfly', 'Drawer', 'Dress', 'Drinking straw', 'Drum',
'Duck', 'Dumbbell', 'Eagle', 'Earrings', 'Egg', 'Elephant', 'Envelope', 'Falcon', 'Fedora',
'Filing cabinet', 'Fire hydrant', 'Fireplace', 'Flag', 'Flashlight', 'Flowerpot', 'Flute',
'Food processor', 'Football', 'Football helmet', 'Fork', 'Fountain', 'Fox', 'French fries',
'Frog', 'Frying pan', 'Gas stove', 'Giraffe', 'Girl', 'Glasses', 'Goat', 'Goggles', 'Goldfish',
'Golf ball', 'Golf cart', 'Gondola', 'Goose', 'Grape', 'Grapefruit', 'Guacamole', 'Guitar',
'Hamburger', 'Hamster', 'Handbag', 'Handgun', 'Harbor seal', 'Harp', 'Harpsichord', 'Headphones',
'Helicopter', 'High heels', 'Honeycomb', 'Horn', 'Horse', 'Hot dog', 'House', 'Houseplant',
'Human arm', 'Human beard', 'Human ear', 'Human eye', 'Human face', 'Human foot', 'Human hair',
'Human hand', 'Human head', 'Human leg', 'Human mouth', 'Human nose', 'Ice cream', 'Infant bed',
'Jacket', 'Jaguar', 'Jeans', 'Jellyfish', 'Jet ski', 'Jug', 'Juice', 'Kangaroo', 'Kettle',
'Kitchen & dining room table', 'Kitchen knife', 'Kite', 'Knife', 'Ladder', 'Ladybug', 'Lamp',
'Lantern', 'Laptop', 'Lavender', 'Lemon', 'Leopard', 'Lifejacket', 'Light bulb', 'Light switch',
'Lighthouse', 'Lily', 'Limousine', 'Lion', 'Lizard', 'Lobster', 'Loveseat', 'Lynx', 'Man',
'Mango', 'Maple', 'Measuring cup', 'Mechanical fan', 'Microphone', 'Microwave oven', 'Miniskirt',
'Mirror', 'Missile', 'Mixer', 'Mobile phone', 'Monkey', 'Motorcycle', 'Mouse', 'Muffin', 'Mug',
'Mule', 'Mushroom', 'Musical keyboard', 'Nail', 'Necklace', 'Nightstand', 'Oboe', 'Office building',
'Orange', 'Organ', 'Ostrich', 'Otter', 'Oven', 'Owl', 'Oyster', 'Paddle', 'Palm tree', 'Pancake',
'Paper towel', 'Parachute', 'Parrot', 'Pasta', 'Peach', 'Pear', 'Pen', 'Penguin', 'Piano',
'Picnic basket', 'Picture frame', 'Pig', 'Pillow', 'Pineapple', 'Pitcher', 'Pizza', 'Plastic bag',
'Plate', 'Platter', 'Polar bear', 'Pomegranate', 'Popcorn', 'Porch', 'Porcupine', 'Poster',
'Potato', 'Power plugs and sockets', 'Pressure cooker', 'Pretzel', 'Printer', 'Pumpkin',
'Punching bag', 'Rabbit', 'Raccoon', 'Radish', 'Raven', 'Refrigerator', 'Rhinoceros', 'Rifle',
'Ring binder', 'Rocket', 'Roller skates', 'Rose', 'Rugby ball', 'Ruler', 'Salad',
'Salt and pepper shakers', 'Sandal', 'Saucer', 'Saxophone', 'Scarf', 'Scissors', 'Scoreboard',
'Screwdriver', 'Sea lion', 'Sea turtle', 'Seahorse', 'Seat belt', 'Segway', 'Serving tray',
'Sewing machine', 'Shark', 'Sheep', 'Shelf', 'Shirt', 'Shorts', 'Shotgun', 'Shower', 'Shrimp',
'Sink', 'Skateboard', 'Ski', 'Skull', 'Skyscraper', 'Slow cooker', 'Snail', 'Snake', 'Snowboard',
'Snowman', 'Snowmobile', 'Snowplow', 'Sock', 'Sofa bed', 'Sombrero', 'Sparrow', 'Spatula',
'Spider', 'Spoon', 'Sports uniform', 'Squirrel', 'Stairs', 'Starfish', 'Stationary bicycle',
'Stool', 'Stop sign', 'Strawberry', 'Street light', 'Stretcher', 'Studio couch',
'Submarine sandwich', 'Suit', 'Suitcase', 'Sun hat', 'Sunflower', 'Sunglasses', 'Surfboard',
'Sushi', 'Swan', 'Swim cap', 'Swimming pool', 'Swimwear', 'Sword', 'Table tennis racket',
'Tablet computer', 'Taco', 'Tank', 'Tap', 'Tart', 'Taxi', 'Tea', 'Teapot', 'Teddy bear',
'Television', 'Tennis ball', 'Tennis racket', 'Tent', 'Tiara', 'Tick', 'Tie', 'Tiger', 'Tin can',
'Tire', 'Toaster', 'Toilet', 'Toilet paper', 'Tomato', 'Torch', 'Tortoise', 'Towel', 'Tower',
'Traffic light', 'Train', 'Training bench', 'Treadmill', 'Tripod', 'Trombone', 'Truck',
'Trumpet', 'Turkey', 'Umbrella', 'Van', 'Vase', 'Vehicle registration plate', 'Violin',
'Volleyball', 'Waffle', 'Wall clock', 'Washing machine', 'Waste container', 'Watch',
'Watermelon', 'Whale', 'Wheel', 'Wheelchair', 'Whiteboard', 'Willow', 'Window',
'Window blind', 'Wine', 'Wine glass', 'Winter melon', 'Wok', 'Woman', 'Wood-burning stove',
'Woodpecker', 'Wrench', 'Zebra', 'Zucchini']
LEVEL_2_LABELS = ['Toy', 'Home appliance', 'Plumbing fixture', 'Office supplies', 'Tableware', 'Kitchen appliance',
'Couch', 'Bed', 'Table', 'Clock', 'Sculpture', 'Traffic sign', 'Building', 'Person', 'Dessert',
'Fruit', 'Shellfish', 'Squash', 'Sandwich', 'Tree', 'Flower', 'Car', 'Boat', 'Aircraft', 'Hat',
'Skirt', 'Glove', 'Trousers', 'Footwear', 'Luggage and bags', 'Helmet', 'Bird',
'Marine invertebrates', 'Beetle', 'Moths and butterflies', 'Bear', 'Marine mammal', 'Turtle',
'Fish', 'Personal care', 'Musical instrument', 'Ball', 'Racket', 'Weapon', 'Telephone',
'Drink']
LEVEL_3_LABELS = ['Seafood', 'Watercraft', 'Insect', 'Carnivore']
# Some classes upper to make more than one class for single net
LEVEL_4_LABELS = ['Vegetable', 'Land vehicle', 'Reptile', 'Invertebrate']
# Some classes upper to make more than one class for single net
LEVEL_5_LABELS = ['Furniture', 'Vehicle', 'Animal']
# Classes with less than 500 samples in train
LEVEL_1_LABELS_LOW_SAMPLES = ['Adhesive tape', 'Alarm clock', 'Ambulance', 'Artichoke', 'Asparagus', 'Bathroom cabinet',
'Beaker', 'Belt', 'Bidet', 'Binoculars', 'Blender', 'Blue jay', 'Briefcase', 'Burrito',
'Cabbage', 'Cake stand', 'Canary', 'Ceiling fan', 'Centipede', 'Coffeemaker', 'Common fig',
'Corded phone', 'Cricket ball', 'Croissant', 'Crutch', 'Cutting board', 'Dagger',
'Digital clock', 'Dog bed', 'Drinking straw', 'Dumbbell', 'Envelope', 'Filing cabinet',
'Fire hydrant', 'Flashlight', 'Flute', 'Food processor', 'Frying pan', 'Golf ball',
'Guacamole', 'Harp', 'Harpsichord', 'Honeycomb', 'Hot dog', 'Infant bed',
'Kitchen knife', 'Light switch', 'Limousine', 'Lynx', 'Mango', 'Measuring cup',
'Microwave oven', 'Mixer', 'Nail', 'Oboe', 'Organ', 'Paper towel', 'Picnic basket',
'Pitcher', 'Popcorn', 'Porcupine', 'Power plugs and sockets', 'Pressure cooker',
'Pretzel', 'Printer', 'Punching bag', 'Raccoon', 'Ring binder', 'Rugby ball', 'Ruler',
'Salt and pepper shakers', 'Scissors', 'Screwdriver', 'Seahorse', 'Seat belt',
'Serving tray', 'Sewing machine', 'Shower', 'Slow cooker', 'Snowmobile', 'Snowplow',
'Spatula', 'Stationary bicycle', 'Stop sign', 'Stretcher', 'Submarine sandwich',
'Tiara', 'Tick', 'Toaster', 'Toilet paper', 'Torch', 'Towel', 'Training bench',
'Treadmill', 'Winter melon', 'Wood-burning stove', 'Wrench']
def save_in_file(arr, file_name):
pickle.dump(arr, gzip.open(file_name, 'wb+', compresslevel=3))
def load_from_file(file_name):
return pickle.load(gzip.open(file_name, 'rb'))
def save_in_file_fast(arr, file_name):
pickle.dump(arr, open(file_name, 'wb'))
def load_from_file_fast(file_name):
return pickle.load(open(file_name, 'rb'))
def show_image(im, name='image'):
cv2.imshow(name, im.astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()
def show_resized_image(P, w=1000, h=1000):
res = cv2.resize(P.astype(np.uint8), (w, h), interpolation=cv2.INTER_CUBIC)
show_image(res)
def get_date_string():
return datetime.datetime.now().strftime("%Y-%m-%d-%H-%M")
def sort_dict_by_values(a, reverse=True):
sorted_x = sorted(a.items(), key=operator.itemgetter(1), reverse=reverse)
return sorted_x
def value_counts_for_list(lst):
a = dict(Counter(lst))
a = sort_dict_by_values(a, True)
return a
def read_single_image(path):
use_pyvips = False
try:
if not use_pyvips:
img = np.array(Image.open(path))
else:
# Much faster in case you have pyvips installed (uncomment import pyvips in top of file)
img = pyvips.Image.new_from_file(path, access='sequential')
img = np.ndarray(buffer=img.write_to_memory(),
dtype=np.uint8,
shape=[img.height, img.width, img.bands])
except:
try:
img = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
except:
print('Fail')
return None
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
if img.shape[2] == 2:
img = img[:, :, :1]
if img.shape[2] == 1:
img = np.concatenate((img, img, img), axis=2)
if img.shape[2] > 3:
img = img[:, :, :3]
return img
def get_description_for_labels():
out = open(INPUT_PATH + 'class-descriptions-boxable.csv')
lines = out.readlines()
ret_1, ret_2 = dict(), dict()
for l in lines:
arr = l.strip().split(',')
ret_1[arr[0]] = arr[1]
ret_2[arr[1]] = arr[0]
return ret_1, ret_2
def read_image_bgr_fast(path):
img2 = read_single_image(path)
img2 = img2[:, :, ::-1]
return img2
def get_subcategories(sub_cat, upper_cat, level, l, d1, sub):
ret = []
sub_cat[upper_cat] = ([], [])
for j, k in enumerate(l[sub]):
nm = d1[k['LabelName']]
sub_cat[upper_cat][1].append(nm)
if nm in sub_cat:
continue
ret.append(nm)
if 'Subcategory' in k:
get_subcategories(sub_cat, nm, level + 1, l, d1, 'Subcategory')
else:
sub_cat[nm] = ([upper_cat], [])
return ret
def get_hierarchy_structures():
sub_cat = dict()
part_cat = dict()
d1, d2 = get_description_for_labels()
arr = json.load(open(INPUT_PATH + 'bbox_labels_600_hierarchy.json', 'r'))
lst = dict(arr.items())['Subcategory']
for i, l in enumerate(lst):
nm = d1[l['LabelName']]
if 'Subcategory' in l:
get_subcategories(sub_cat, nm, 1, l, d1, 'Subcategory')
else:
if nm in sub_cat:
print('Strange!')
exit()
sub_cat[nm] = [], []
return sub_cat
def set_parents(parents, name_list, l, d1):
for j, k in enumerate(l['Subcategory']):
nm = d1[k['LabelName']]
parents[nm] += name_list
if 'Subcategory' in k:
set_parents(parents, name_list + [nm], k, d1)
def get_parents_labels():
d1, d2 = get_description_for_labels()
parents = dict()
for r in d2.keys():
parents[r] = []
arr = json.load(open(INPUT_PATH + 'bbox_labels_600_hierarchy.json', 'r'))
lst = dict(arr.items())['Subcategory']
for i, l in enumerate(lst):
nm = d1[l['LabelName']]
if 'Subcategory' in l:
set_parents(parents, [nm], l, d1)
# print(parents)
for p in parents:
parents[p] = list(set(parents[p]))
return parents
def get_description_for_labels_500():
out = open(INPUT_PATH + 'challenge-2018-class-descriptions-500.csv')
lines = out.readlines()
ret_1, ret_2 = dict(), dict()
for l in lines:
arr = l.strip().split(',')
ret_1[arr[0]] = arr[1]
ret_2[arr[1]] = arr[0]
return ret_1, ret_2
def random_intensity_change1(img, min_change=-20, max_change=20, separate_channel=True):
img = img.astype(np.float32)
delta = random.randint(min_change, max_change)
for j in range(3):
if separate_channel:
delta = random.randint(min_change, max_change)
img[:, :, j] += delta
img[img < 0] = 0
img[img > 255] = 255
return img.astype(np.uint8)