forked from hadley/r4ds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
strings.Rmd
1047 lines (772 loc) · 38.7 KB
/
strings.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Strings
## Introduction
This chapter introduces you to string manipulation in R.
You'll learn the basics of how strings work and how to create them by hand, but the focus of this chapter will be on regular expressions, or regexps for short.
Regular expressions are useful because strings usually contain unstructured or semi-structured data, and regexps are a concise language for describing patterns in strings.
When you first look at a regexp, you'll think a cat walked across your keyboard, but as your understanding improves they will soon start to make sense.
### Prerequisites
This chapter will focus on the **stringr** package for string manipulation, which is part of the core tidyverse.
```{r setup, message = FALSE}
library(tidyverse)
```
## String basics
You can create strings with either single quotes or double quotes.
Unlike other languages, there is no difference in behaviour.
I recommend always using `"`, unless you want to create a string that contains multiple `"`.
```{r}
string1 <- "This is a string"
string2 <- 'If I want to include a "quote" inside a string, I use single quotes'
```
If you forget to close a quote, you'll see `+`, the continuation character:
> "This is a string without a closing quote
+
+
+ HELP I'M STUCK
If this happen to you, press Escape and try again!
To include a literal single or double quote in a string you can use `\` to "escape" it:
```{r}
double_quote <- "\"" # or '"'
single_quote <- '\'' # or "'"
```
That means if you want to include a literal backslash, you'll need to double it up: `"\\"`.
Beware that the printed representation of a string is not the same as string itself, because the printed representation shows the escapes.
To see the raw contents of the string, use `writeLines()`:
```{r}
x <- c("\"", "\\")
x
writeLines(x)
```
There are a handful of other special characters.
The most common are `"\n"`, newline, and `"\t"`, tab, but you can see the complete list by requesting help on `"`: `?'"'`, or `?"'"`.
You'll also sometimes see strings like `"\u00b5"`, this is a way of writing non-English characters that works on all platforms:
```{r}
x <- "\u00b5"
x
```
Multiple strings are often stored in a character vector, which you can create with `c()`:
```{r}
c("one", "two", "three")
```
### String length
Base R contains many functions to work with strings but we'll avoid them because they can be inconsistent, which makes them hard to remember.
Instead we'll use functions from stringr.
These have more intuitive names, and all start with `str_`.
For example, `str_length()` tells you the number of characters in a string:
```{r}
str_length(c("a", "R for data science", NA))
```
The common `str_` prefix is particularly useful if you use RStudio, because typing `str_` will trigger autocomplete, allowing you to see all stringr functions:
```{r, echo = FALSE}
knitr::include_graphics("screenshots/stringr-autocomplete.png")
```
### Combining strings
To combine two or more strings, use `str_c()`:
```{r}
str_c("x", "y")
str_c("x", "y", "z")
```
Use the `sep` argument to control how they're separated:
```{r}
str_c("x", "y", sep = ", ")
```
Like most other functions in R, missing values are contagious.
If you want them to print as `"NA"`, use `str_replace_na()`:
```{r}
x <- c("abc", NA)
str_c("|-", x, "-|")
str_c("|-", str_replace_na(x), "-|")
```
As shown above, `str_c()` is vectorised, and it automatically recycles shorter vectors to the same length as the longest:
```{r}
str_c("prefix-", c("a", "b", "c"), "-suffix")
```
Objects of length 0 are silently dropped.
This is particularly useful in conjunction with `if`:
```{r}
name <- "Hadley"
time_of_day <- "morning"
birthday <- FALSE
str_c(
"Good ", time_of_day, " ", name,
if (birthday) " and HAPPY BIRTHDAY",
"."
)
```
To collapse a vector of strings into a single string, use `collapse`:
```{r}
str_c(c("x", "y", "z"), collapse = ", ")
```
### Subsetting strings
You can extract parts of a string using `str_sub()`.
As well as the string, `str_sub()` takes `start` and `end` arguments which give the (inclusive) position of the substring:
```{r}
x <- c("Apple", "Banana", "Pear")
str_sub(x, 1, 3)
# negative numbers count backwards from end
str_sub(x, -3, -1)
```
Note that `str_sub()` won't fail if the string is too short: it will just return as much as possible:
```{r}
str_sub("a", 1, 5)
```
You can also use the assignment form of `str_sub()` to modify strings:
```{r}
str_sub(x, 1, 1) <- str_to_lower(str_sub(x, 1, 1))
x
```
### Locales
Above I used `str_to_lower()` to change the text to lower case.
You can also use `str_to_upper()` or `str_to_title()`.
However, changing case is more complicated than it might at first appear because different languages have different rules for changing case.
You can pick which set of rules to use by specifying a locale:
```{r}
# Turkish has two i's: with and without a dot, and it
# has a different rule for capitalising them:
str_to_upper(c("i", "ı"))
str_to_upper(c("i", "ı"), locale = "tr")
```
The locale is specified as a ISO 639 language code, which is a two or three letter abbreviation.
If you don't already know the code for your language, [Wikipedia](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) has a good list.
If you leave the locale blank, it will use the current locale, as provided by your operating system.
Another important operation that's affected by the locale is sorting.
The base R `order()` and `sort()` functions sort strings using the current locale.
If you want robust behaviour across different computers, you may want to use `str_sort()` and `str_order()` which take an additional `locale` argument:
```{r}
x <- c("apple", "eggplant", "banana")
str_sort(x, locale = "en") # English
str_sort(x, locale = "haw") # Hawaiian
```
### Exercises
1. In code that doesn't use stringr, you'll often see `paste()` and `paste0()`.
What's the difference between the two functions?
What stringr function are they equivalent to?
How do the functions differ in their handling of `NA`?
2. In your own words, describe the difference between the `sep` and `collapse` arguments to `str_c()`.
3. Use `str_length()` and `str_sub()` to extract the middle character from a string.
What will you do if the string has an even number of characters?
4. What does `str_wrap()` do?
When might you want to use it?
5. What does `str_trim()` do?
What's the opposite of `str_trim()`?
6. Write a function that turns (e.g.) a vector `c("a", "b", "c")` into the string `a, b, and c`.
Think carefully about what it should do if given a vector of length 0, 1, or 2.
## Matching patterns with regular expressions
Regexps are a very terse language that allow you to describe patterns in strings.
They take a little while to get your head around, but once you understand them, you'll find them extremely useful.
To learn regular expressions, we'll use `str_view()` and `str_view_all()`.
These functions take a character vector and a regular expression, and show you how they match.
We'll start with very simple regular expressions and then gradually get more and more complicated.
Once you've mastered pattern matching, you'll learn how to apply those ideas with various stringr functions.
### Basic matches
The simplest patterns match exact strings:
```{r}
x <- c("apple", "banana", "pear")
str_view(x, "an")
```
The next step up in complexity is `.`, which matches any character (except a newline):
```{r}
str_view(x, ".a.")
```
But if "`.`" matches any character, how do you match the character "`.`"?
You need to use an "escape" to tell the regular expression you want to match it exactly, not use its special behaviour.
Like strings, regexps use the backslash, `\`, to escape special behaviour.
So to match an `.`, you need the regexp `\.`.
Unfortunately this creates a problem.
We use strings to represent regular expressions, and `\` is also used as an escape symbol in strings.
So to create the regular expression `\.` we need the string `"\\."`.
```{r}
# To create the regular expression, we need \\
dot <- "\\."
# But the expression itself only contains one:
writeLines(dot)
# And this tells R to look for an explicit .
str_view(c("abc", "a.c", "bef"), "a\\.c")
```
If `\` is used as an escape character in regular expressions, how do you match a literal `\`?
Well you need to escape it, creating the regular expression `\\`.
To create that regular expression, you need to use a string, which also needs to escape `\`.
That means to match a literal `\` you need to write `"\\\\"` --- you need four backslashes to match one!
```{r}
x <- "a\\b"
writeLines(x)
str_view(x, "\\\\")
```
In this book, I'll write regular expression as `\.` and strings that represent the regular expression as `"\\."`.
#### Exercises
1. Explain why each of these strings don't match a `\`: `"\"`, `"\\"`, `"\\\"`.
2. How would you match the sequence `"'\`?
3. What patterns will the regular expression `\..\..\..` match?
How would you represent it as a string?
### Anchors
By default, regular expressions will match any part of a string.
It's often useful to *anchor* the regular expression so that it matches from the start or end of the string.
You can use:
- `^` to match the start of the string.
- `$` to match the end of the string.
```{r}
x <- c("apple", "banana", "pear")
str_view(x, "^a")
str_view(x, "a$")
```
To remember which is which, try this mnemonic which I learned from [Evan Misshula](https://twitter.com/emisshula/status/323863393167613953): if you begin with power (`^`), you end up with money (`$`).
To force a regular expression to only match a complete string, anchor it with both `^` and `$`:
```{r}
x <- c("apple pie", "apple", "apple cake")
str_view(x, "apple")
str_view(x, "^apple$")
```
You can also match the boundary between words with `\b`.
I don't often use this in R, but I will sometimes use it when I'm doing a search in RStudio when I want to find the name of a function that's a component of other functions.
For example, I'll search for `\bsum\b` to avoid matching `summarise`, `summary`, `rowsum` and so on.
#### Exercises
1. How would you match the literal string `"$^$"`?
2. Given the corpus of common words in `stringr::words`, create regular expressions that find all words that:
a. Start with "y".
b. End with "x"
c. Are exactly three letters long. (Don't cheat by using `str_length()`!)
d. Have seven letters or more.
Since this list is long, you might want to use the `match` argument to `str_view()` to show only the matching or non-matching words.
### Character classes and alternatives
There are a number of special patterns that match more than one character.
You've already seen `.`, which matches any character apart from a newline.
There are four other useful tools:
- `\d`: matches any digit.
- `\s`: matches any whitespace (e.g. space, tab, newline).
- `[abc]`: matches a, b, or c.
- `[^abc]`: matches anything except a, b, or c.
Remember, to create a regular expression containing `\d` or `\s`, you'll need to escape the `\` for the string, so you'll type `"\\d"` or `"\\s"`.
A character class containing a single character is a nice alternative to backslash escapes when you want to include a single metacharacter in a regex.
Many people find this more readable.
```{r}
# Look for a literal character that normally has special meaning in a regex
str_view(c("abc", "a.c", "a*c", "a c"), "a[.]c")
str_view(c("abc", "a.c", "a*c", "a c"), ".[*]c")
str_view(c("abc", "a.c", "a*c", "a c"), "a[ ]")
```
This works for most (but not all) regex metacharacters: `$` `.` `|` `?` `*` `+` `(` `)` `[` `{`.
Unfortunately, a few characters have special meaning even inside a character class and must be handled with backslash escapes: `]` `\` `^` and `-`.
You can use *alternation* to pick between one or more alternative patterns.
For example, `abc|d..f` will match either '"abc"', or `"deaf"`.
Note that the precedence for `|` is low, so that `abc|xyz` matches `abc` or `xyz` not `abcyz` or `abxyz`.
Like with mathematical expressions, if precedence ever gets confusing, use parentheses to make it clear what you want:
```{r}
str_view(c("grey", "gray"), "gr(e|a)y")
```
#### Exercises
1. Create regular expressions to find all words that:
a. Start with a vowel.
b. That only contain consonants. (Hint: thinking about matching "not"-vowels.)
c. End with `ed`, but not with `eed`.
d. End with `ing` or `ise`.
2. Empirically verify the rule "i before e except after c".
3. Is "q" always followed by a "u"?
4. Write a regular expression that matches a word if it's probably written in British English, not American English.
5. Create a regular expression that will match telephone numbers as commonly written in your country.
### Repetition
The next step up in power involves controlling how many times a pattern matches:
- `?`: 0 or 1
- `+`: 1 or more
- `*`: 0 or more
```{r}
x <- "1888 is the longest year in Roman numerals: MDCCCLXXXVIII"
str_view(x, "CC?")
str_view(x, "CC+")
str_view(x, 'C[LX]+')
```
Note that the precedence of these operators is high, so you can write: `colou?r` to match either American or British spellings.
That means most uses will need parentheses, like `bana(na)+`.
You can also specify the number of matches precisely:
- `{n}`: exactly n
- `{n,}`: n or more
- `{,m}`: at most m
- `{n,m}`: between n and m
```{r}
str_view(x, "C{2}")
str_view(x, "C{2,}")
str_view(x, "C{2,3}")
```
By default these matches are "greedy": they will match the longest string possible.
You can make them "lazy", matching the shortest string possible by putting a `?` after them.
This is an advanced feature of regular expressions, but it's useful to know that it exists:
```{r}
str_view(x, 'C{2,3}?')
str_view(x, 'C[LX]+?')
```
#### Exercises
1. Describe the equivalents of `?`, `+`, `*` in `{m,n}` form.
2. Describe in words what these regular expressions match: (read carefully to see if I'm using a regular expression or a string that defines a regular expression.)
a. `^.*$`
b. `"\\{.+\\}"`
c. `\d{4}-\d{2}-\d{2}`
d. `"\\\\{4}"`
3. Create regular expressions to find all words that:
a. Start with three consonants.
b. Have three or more vowels in a row.
c. Have two or more vowel-consonant pairs in a row.
4. Solve the beginner regexp crosswords at <https://regexcrossword.com/challenges/beginner>.
### Grouping and backreferences
Earlier, you learned about parentheses as a way to disambiguate complex expressions.
Parentheses also create a *numbered* capturing group (number 1, 2 etc.).
A capturing group stores *the part of the string* matched by the part of the regular expression inside the parentheses.
You can refer to the same text as previously matched by a capturing group with *backreferences*, like `\1`, `\2` etc.
For example, the following regular expression finds all fruits that have a repeated pair of letters.
```{r}
str_view(fruit, "(..)\\1", match = TRUE)
```
(Shortly, you'll also see how they're useful in conjunction with `str_match()`.)
#### Exercises
1. Describe, in words, what these expressions will match:
a. `(.)\1\1`
b. `"(.)(.)\\2\\1"`
c. `(..)\1`
d. `"(.).\\1.\\1"`
e. `"(.)(.)(.).*\\3\\2\\1"`
2. Construct regular expressions to match words that:
a. Start and end with the same character.
b. Contain a repeated pair of letters (e.g. "church" contains "ch" repeated twice.)
c. Contain one letter repeated in at least three places (e.g. "eleven" contains three "e"s.)
## Tools
Now that you've learned the basics of regular expressions, it's time to learn how to apply them to real problems.
In this section you'll learn a wide array of stringr functions that let you:
- Determine which strings match a pattern.
- Find the positions of matches.
- Extract the content of matches.
- Replace matches with new values.
- Split a string based on a match.
A word of caution before we continue: because regular expressions are so powerful, it's easy to try and solve every problem with a single regular expression.
In the words of Jamie Zawinski:
> Some people, when confronted with a problem, think "I know, I'll use regular expressions." Now they have two problems.
As a cautionary tale, check out this regular expression that checks if a email address is valid:
(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:
\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)
?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)
?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t]
)*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*
)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)
*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r
\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t
]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[ \t]))*"(?:(?:\r\n)?[ \t])*)*:(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \0
00-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,
;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[
^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)(?:,\s*(
?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(
?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t
])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?
:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)
?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)
?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:
\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])
*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\
.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(
?:\r\n)?[ \t])*))*)?;\s*)
This is a somewhat pathological example (because email addresses are actually surprisingly complex), but is used in real code.
See the Stack Overflow discussion at <http://stackoverflow.com/a/201378> for more details.
Don't forget that you're in a programming language and you have other tools at your disposal.
Instead of creating one complex regular expression, it's often easier to write a series of simpler regexps.
If you get stuck trying to create a single regexp that solves your problem, take a step back and think if you could break the problem down into smaller pieces, solving each challenge before moving onto the next one.
### Detect matches
To determine if a character vector matches a pattern, use `str_detect()`.
It returns a logical vector the same length as the input:
```{r}
x <- c("apple", "banana", "pear")
str_detect(x, "e")
```
Remember that when you use a logical vector in a numeric context, `FALSE` becomes 0 and `TRUE` becomes 1.
That makes `sum()` and `mean()` useful if you want to answer questions about matches across a larger vector:
```{r}
# How many common words start with t?
sum(str_detect(words, "^t"))
# What proportion of common words end with a vowel?
mean(str_detect(words, "[aeiou]$"))
```
When you have complex logical conditions (e.g. match a or b but not c unless d) it's often easier to combine multiple `str_detect()` calls with logical operators, rather than trying to create a single regular expression.
For example, here are two ways to find all words that don't contain any vowels:
```{r}
# Find all words containing at least one vowel, and negate
no_vowels_1 <- !str_detect(words, "[aeiou]")
# Find all words consisting only of consonants (non-vowels)
no_vowels_2 <- str_detect(words, "^[^aeiou]+$")
identical(no_vowels_1, no_vowels_2)
```
The results are identical, but I think the first approach is significantly easier to understand.
If your regular expression gets overly complicated, try breaking it up into smaller pieces, giving each piece a name, and then combining the pieces with logical operations.
A common use of `str_detect()` is to select the elements that match a pattern.
You can do this with logical subsetting, or the convenient `str_subset()` wrapper:
```{r}
words[str_detect(words, "x$")]
str_subset(words, "x$")
```
Typically, however, your strings will be one column of a data frame, and you'll want to use filter instead:
```{r}
df <- tibble(
word = words,
i = seq_along(word)
)
df %>%
filter(str_detect(word, "x$"))
```
A variation on `str_detect()` is `str_count()`: rather than a simple yes or no, it tells you how many matches there are in a string:
```{r}
x <- c("apple", "banana", "pear")
str_count(x, "a")
# On average, how many vowels per word?
mean(str_count(words, "[aeiou]"))
```
It's natural to use `str_count()` with `mutate()`:
```{r}
df %>%
mutate(
vowels = str_count(word, "[aeiou]"),
consonants = str_count(word, "[^aeiou]")
)
```
Note that matches never overlap.
For example, in `"abababa"`, how many times will the pattern `"aba"` match?
Regular expressions say two, not three:
```{r}
str_count("abababa", "aba")
str_view_all("abababa", "aba")
```
Note the use of `str_view_all()`.
As you'll shortly learn, many stringr functions come in pairs: one function works with a single match, and the other works with all matches.
The second function will have the suffix `_all`.
#### Exercises
1. For each of the following challenges, try solving it by using both a single regular expression, and a combination of multiple `str_detect()` calls.
a. Find all words that start or end with `x`.
b. Find all words that start with a vowel and end with a consonant.
c. Are there any words that contain at least one of each different vowel?
2. What word has the highest number of vowels?
What word has the highest proportion of vowels?
(Hint: what is the denominator?)
### Extract matches
To extract the actual text of a match, use `str_extract()`.
To show that off, we're going to need a more complicated example.
I'm going to use the [Harvard sentences](https://en.wikipedia.org/wiki/Harvard_sentences), which were designed to test VOIP systems, but are also useful for practicing regexps.
These are provided in `stringr::sentences`:
```{r}
length(sentences)
head(sentences)
```
Imagine we want to find all sentences that contain a colour.
We first create a vector of colour names, and then turn it into a single regular expression:
```{r}
colours <- c("red", "orange", "yellow", "green", "blue", "purple")
colour_match <- str_c(colours, collapse = "|")
colour_match
```
Now we can select the sentences that contain a colour, and then extract the colour to figure out which one it is:
```{r}
has_colour <- str_subset(sentences, colour_match)
matches <- str_extract(has_colour, colour_match)
head(matches)
```
Note that `str_extract()` only extracts the first match.
We can see that most easily by first selecting all the sentences that have more than 1 match:
```{r}
more <- sentences[str_count(sentences, colour_match) > 1]
str_view_all(more, colour_match)
str_extract(more, colour_match)
```
This is a common pattern for stringr functions, because working with a single match allows you to use much simpler data structures.
To get all matches, use `str_extract_all()`.
It returns a list:
```{r}
str_extract_all(more, colour_match)
```
You'll learn more about lists in Section \@ref(lists) on lists and Chapter \@ref(iteration) on iteration.
If you use `simplify = TRUE`, `str_extract_all()` will return a matrix with short matches expanded to the same length as the longest:
```{r}
str_extract_all(more, colour_match, simplify = TRUE)
x <- c("a", "a b", "a b c")
str_extract_all(x, "[a-z]", simplify = TRUE)
```
#### Exercises
1. In the previous example, you might have noticed that the regular expression matched "flickered", which is not a colour.
Modify the regex to fix the problem.
2. From the Harvard sentences data, extract:
1. The first word from each sentence.
2. All words ending in `ing`.
3. All plurals.
### Grouped matches
Earlier in this chapter we talked about the use of parentheses for clarifying precedence and for backreferences when matching.
You can also use parentheses to extract parts of a complex match.
For example, imagine we want to extract nouns from the sentences.
As a heuristic, we'll look for any word that comes after "a" or "the".
Defining a "word" in a regular expression is a little tricky, so here I use a simple approximation: a sequence of at least one character that isn't a space.
```{r}
noun <- "(a|the) ([^ ]+)"
has_noun <- sentences %>%
str_subset(noun) %>%
head(10)
has_noun %>%
str_extract(noun)
```
`str_extract()` gives us the complete match; `str_match()` gives each individual component.
Instead of a character vector, it returns a matrix, with one column for the complete match followed by one column for each group:
```{r}
has_noun %>%
str_match(noun)
```
(Unsurprisingly, our heuristic for detecting nouns is poor, and also picks up adjectives like smooth and parked.)
If your data is in a tibble, it's often easier to use `tidyr::extract()`.
It works like `str_match()` but requires you to name the matches, which are then placed in new columns:
```{r}
tibble(sentence = sentences) %>%
tidyr::extract(
sentence, c("article", "noun"), "(a|the) ([^ ]+)",
remove = FALSE
)
```
Like `str_extract()`, if you want all matches for each string, you'll need `str_match_all()`.
#### Exercises
1. Find all words that come after a "number" like "one", "two", "three" etc.
Pull out both the number and the word.
2. Find all contractions.
Separate out the pieces before and after the apostrophe.
### Replacing matches
`str_replace()` and `str_replace_all()` allow you to replace matches with new strings.
The simplest use is to replace a pattern with a fixed string:
```{r}
x <- c("apple", "pear", "banana")
str_replace(x, "[aeiou]", "-")
str_replace_all(x, "[aeiou]", "-")
```
With `str_replace_all()` you can perform multiple replacements by supplying a named vector:
```{r}
x <- c("1 house", "2 cars", "3 people")
str_replace_all(x, c("1" = "one", "2" = "two", "3" = "three"))
```
Instead of replacing with a fixed string you can use backreferences to insert components of the match.
In the following code, I flip the order of the second and third words.
```{r}
sentences %>%
str_replace("([^ ]+) ([^ ]+) ([^ ]+)", "\\1 \\3 \\2") %>%
head(5)
```
#### Exercises
1. Replace all forward slashes in a string with backslashes.
2. Implement a simple version of `str_to_lower()` using `replace_all()`.
3. Switch the first and last letters in `words`.
Which of those strings are still words?
### Splitting
Use `str_split()` to split a string up into pieces.
For example, we could split sentences into words:
```{r}
sentences %>%
head(5) %>%
str_split(" ")
```
Because each component might contain a different number of pieces, this returns a list.
If you're working with a length-1 vector, the easiest thing is to just extract the first element of the list:
```{r}
"a|b|c|d" %>%
str_split("\\|") %>%
.[[1]]
```
Otherwise, like the other stringr functions that return a list, you can use `simplify = TRUE` to return a matrix:
```{r}
sentences %>%
head(5) %>%
str_split(" ", simplify = TRUE)
```
You can also request a maximum number of pieces:
```{r}
fields <- c("Name: Hadley", "Country: NZ", "Age: 35")
fields %>% str_split(": ", n = 2, simplify = TRUE)
```
Instead of splitting up strings by patterns, you can also split up by character, line, sentence and word `boundary()`s:
```{r}
x <- "This is a sentence. This is another sentence."
str_view_all(x, boundary("word"))
str_split(x, " ")[[1]]
str_split(x, boundary("word"))[[1]]
```
#### Exercises
1. Split up a string like `"apples, pears, and bananas"` into individual components.
2. Why is it better to split up by `boundary("word")` than `" "`?
3. What does splitting with an empty string (`""`) do?
Experiment, and then read the documentation.
### Find matches
`str_locate()` and `str_locate_all()` give you the starting and ending positions of each match.
These are particularly useful when none of the other functions does exactly what you want.
You can use `str_locate()` to find the matching pattern, `str_sub()` to extract and/or modify them.
## Other types of pattern
When you use a pattern that's a string, it's automatically wrapped into a call to `regex()`:
```{r, eval = FALSE}
# The regular call:
str_view(fruit, "nana")
# Is shorthand for
str_view(fruit, regex("nana"))
```
You can use the other arguments of `regex()` to control details of the match:
- `ignore_case = TRUE` allows characters to match either their uppercase or lowercase forms.
This always uses the current locale.
```{r}
bananas <- c("banana", "Banana", "BANANA")
str_view(bananas, "banana")
str_view(bananas, regex("banana", ignore_case = TRUE))
```
- `multiline = TRUE` allows `^` and `$` to match the start and end of each line rather than the start and end of the complete string.
```{r}
x <- "Line 1\nLine 2\nLine 3"
str_extract_all(x, "^Line")[[1]]
str_extract_all(x, regex("^Line", multiline = TRUE))[[1]]
```
- `comments = TRUE` allows you to use comments and white space to make complex regular expressions more understandable.
Spaces are ignored, as is everything after `#`.
To match a literal space, you'll need to escape it: `"\\ "`.
```{r}
phone <- regex("
\\(? # optional opening parens
(\\d{3}) # area code
[) -]? # optional closing parens, space, or dash
(\\d{3}) # another three numbers
[ -]? # optional space or dash
(\\d{3}) # three more numbers
", comments = TRUE)
str_match("514-791-8141", phone)
```
- `dotall = TRUE` allows `.` to match everything, including `\n`.
There are three other functions you can use instead of `regex()`:
- `fixed()`: matches exactly the specified sequence of bytes.
It ignores all special regular expressions and operates at a very low level.
This allows you to avoid complex escaping and can be much faster than regular expressions.
The following microbenchmark shows that it's about 3x faster for a simple example.
```{r}
microbenchmark::microbenchmark(
fixed = str_detect(sentences, fixed("the")),
regex = str_detect(sentences, "the"),
times = 20
)
```
Beware using `fixed()` with non-English data.
It is problematic because there are often multiple ways of representing the same character.
For example, there are two ways to define "á": either as a single character or as an "a" plus an accent:
```{r}
a1 <- "\u00e1"
a2 <- "a\u0301"
c(a1, a2)
a1 == a2
```
They render identically, but because they're defined differently, `fixed()` doesn't find a match.
Instead, you can use `coll()`, defined next, to respect human character comparison rules:
```{r}
str_detect(a1, fixed(a2))
str_detect(a1, coll(a2))
```
- `coll()`: compare strings using standard **coll**ation rules.
This is useful for doing case insensitive matching.
Note that `coll()` takes a `locale` parameter that controls which rules are used for comparing characters.
Unfortunately different parts of the world use different rules!
```{r}
# That means you also need to be aware of the difference
# when doing case insensitive matches:
i <- c("I", "İ", "i", "ı")
i
str_subset(i, coll("i", ignore_case = TRUE))
str_subset(i, coll("i", ignore_case = TRUE, locale = "tr"))
```
Both `fixed()` and `regex()` have `ignore_case` arguments, but they do not allow you to pick the locale: they always use the default locale.
You can see what that is with the following code; more on stringi later.
```{r}
stringi::stri_locale_info()
```
The downside of `coll()` is speed; because the rules for recognising which characters are the same are complicated, `coll()` is relatively slow compared to `regex()` and `fixed()`.
- As you saw with `str_split()` you can use `boundary()` to match boundaries.
You can also use it with the other functions:
```{r}
x <- "This is a sentence."
str_view_all(x, boundary("word"))
str_extract_all(x, boundary("word"))
```