-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_sam.py
161 lines (140 loc) · 5.57 KB
/
build_sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from functools import partial
from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
from torch.nn import functional as F
def build_sam_vit_h(args):
return _build_sam(
encoder_embed_dim=1280,
encoder_depth=32,
encoder_num_heads=16,
encoder_global_attn_indexes=[7, 15, 23, 31],
image_size=args.image_size,
checkpoint=args.sam_checkpoint,
)
build_sam = build_sam_vit_h
def build_sam_vit_l(args):
return _build_sam(
encoder_embed_dim=1024,
encoder_depth=24,
encoder_num_heads=16,
encoder_global_attn_indexes=[5, 11, 17, 23],
image_size=args.image_size,
checkpoint=args.sam_checkpoint,
)
def build_sam_vit_b(args):
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
image_size=args.image_size,
checkpoint=args.sam_checkpoint,
)
sam_model_registry = {
"default": build_sam_vit_h,
"vit_h": build_sam_vit_h,
"vit_l": build_sam_vit_l,
"vit_b": build_sam_vit_b,
}
def _build_sam(
encoder_embed_dim,
encoder_depth,
encoder_num_heads,
encoder_global_attn_indexes,
image_size,
checkpoint,
):
prompt_embed_dim = 256
image_size = image_size
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
sam = Sam(
image_encoder=ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos = True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
),
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
sam.train()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
try:
if 'model' in state_dict.keys():
sam.load_state_dict(state_dict['model'])
else:
sam.load_state_dict(state_dict)
except:
print('*******interpolate')
new_state_dict = load_from(sam, state_dict, image_size, vit_patch_size)
sam.load_state_dict(new_state_dict)
print(f"*******load {checkpoint}")
return sam
def load_from(sam, state_dicts, image_size, vit_patch_size):
sam_dict = sam.state_dict()
except_keys = ['mask_tokens', 'output_hypernetworks_mlps', 'iou_prediction_head']
new_state_dict = {k: v for k, v in state_dicts.items() if
k in sam_dict.keys() and except_keys[0] not in k and except_keys[1] not in k and except_keys[2] not in k}
pos_embed = new_state_dict['image_encoder.pos_embed']
token_size = int(image_size // vit_patch_size)
if pos_embed.shape[1] != token_size:
# resize pos embedding, which may sacrifice the performance, but I have no better idea
pos_embed = pos_embed.permute(0, 3, 1, 2) # [b, c, h, w]
pos_embed = F.interpolate(pos_embed, (token_size, token_size), mode='bilinear', align_corners=False)
pos_embed = pos_embed.permute(0, 2, 3, 1) # [b, h, w, c]
new_state_dict['image_encoder.pos_embed'] = pos_embed
rel_pos_keys = [k for k in sam_dict.keys() if 'rel_pos' in k]
global_rel_pos_keys = [k for k in rel_pos_keys if
'2' in k or
'5' in k or
'7' in k or
'8' in k or
'11' in k or
'13' in k or
'15' in k or
'23' in k or
'31' in k]
# print(sam_dict)
for k in global_rel_pos_keys:
h_check, w_check = sam_dict[k].shape
rel_pos_params = new_state_dict[k]
h, w = rel_pos_params.shape
rel_pos_params = rel_pos_params.unsqueeze(0).unsqueeze(0)
if h != h_check or w != w_check:
rel_pos_params = F.interpolate(rel_pos_params, (h_check, w_check), mode='bilinear', align_corners=False)
new_state_dict[k] = rel_pos_params[0, 0, ...]
sam_dict.update(new_state_dict)
return sam_dict