forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IndexKernel.cpp
582 lines (538 loc) · 21.9 KB
/
IndexKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/native/IndexKernel.h>
#include <cmath>
#include <iostream>
#include <ATen/Context.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/AtomicAddFloat.h>
#include <ATen/native/cpu/Loops.h>
#include <ATen/cpu/vec/vec.h>
#include <c10/util/irange.h>
#include <c10/core/Scalar.h>
namespace at { namespace native {
namespace {
using namespace vec;
struct Indexer {
Indexer(int64_t num_indexers, char** indexers, const int64_t* indexer_strides,
IntArrayRef original_sizes, IntArrayRef original_strides)
: num_indexers(num_indexers)
, indexers(indexers)
, indexer_strides(indexer_strides)
, original_strides(original_strides.data())
, original_sizes(original_sizes.data()) {
AT_ASSERT(static_cast<int64_t>(original_strides.size()) == num_indexers);
AT_ASSERT(static_cast<int64_t>(original_sizes.size()) == num_indexers);
}
int64_t num_indexers;
char** indexers;
const int64_t* indexer_strides;
const int64_t* original_strides;
const int64_t* original_sizes;
int64_t get(int64_t idx) {
int64_t offset = 0;
for (const auto j : c10::irange(num_indexers)) {
int64_t value = *(int64_t*)&indexers[j][idx * indexer_strides[j]];
int64_t size = original_sizes[j];
TORCH_CHECK_INDEX(value >= -size && value < size,
"index ", value, " is out of bounds for dimension ", j, " with size ", size);
if (value < 0) {
value += size;
}
offset += value * original_strides[j];
}
return offset;
}
};
static bool is_constant_index(int ntensor, const int64_t* strides) {
AT_ASSERT(ntensor >= 3);
for (const auto arg : c10::irange(2, ntensor)) {
if (strides[arg] != 0) {
return false;
}
}
return true;
}
template <typename scalar_t, typename func_t>
void cpu_index_kernel(TensorIterator& iter, IntArrayRef index_size, IntArrayRef index_stride,
const func_t& f, bool serial_execution=false)
{
int ntensor = iter.ntensors();
// When launch the index parallel version, set a relative samll grain size less than the INTERNAL::GRAIN_SIZE
// to make the whole available thread numbers get more balanced work load and a better cache location.
// The grain size here is chosen by the op benchmark to overcome the thread launch overhead
const int index_parallel_grain_size = 3000;
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto indexer = Indexer(ntensor - 2, &data[2], &strides[2], index_size, index_stride);
char* dst = data[0];
char* src = data[1];
if (is_constant_index(ntensor, strides)) {
// specialization for when every element uses the same index
int64_t offset = indexer.get(0);
if (strides[0] == sizeof(scalar_t) && strides[1] == sizeof(scalar_t)) {
for (const auto i : c10::irange(n)) {
f(dst + strides[0] * i, src + strides[1] * i, offset);
}
} else {
for (const auto i : c10::irange(n)) {
f(dst + strides[0] * i, src + strides[1] * i, offset);
}
}
} else {
for (const auto i : c10::irange(n)) {
int64_t offset = indexer.get(i);
f(dst + strides[0] * i, src + strides[1] * i, offset);
}
}
};
if (serial_execution) {
iter.serial_for_each(loop, {0, iter.numel()});
} else {
iter.for_each(loop, index_parallel_grain_size);
}
}
void index_kernel(TensorIterator& iter, IntArrayRef index_size, IntArrayRef index_stride) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16,
iter.dtype(), "index_cpu", [&] {
cpu_index_kernel<scalar_t>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
*(scalar_t*)dst = *(scalar_t*)(src + offset);
});
});
}
// Given a linear index, returns the offset of the tensor.
// Implements the same algorithm as its (legacy) GPU version cuda::detail::IndexToOffset
// OffsetCalculator implements yet again the same algorithm but in a column-major order
struct IndexToOffset {
const IntArrayRef sizes;
const IntArrayRef strides;
const int64_t ndim;
explicit IndexToOffset(const TensorBase & tensor) :
sizes(tensor.sizes()), strides(tensor.strides()), ndim(tensor.dim()) {
}
int64_t get(int64_t linear_index) const {
int64_t offset = 0;
for (int64_t i = ndim - 1; i > 0; i--) {
offset += (linear_index % sizes[i]) * strides[i];
linear_index /= sizes[i];
}
return offset + linear_index * strides[0];
}
};
template <typename scalar_t, typename func_t>
void cpu_take_put_kernel(
TensorIterator& iter,
const TensorBase& indexed,
const func_t& f,
bool serial_execution=false) {
// This kernel follows the same strategy as `cpu_index_kernel`
// Even though the indexed_tensor is const, we modify it through the data_ptr
// This is a bit dirty, but otherwise it would be necessary to innecessarily add tensor
// with zero strides to `iter` which would not be much better
// When launch the parallel version, set a relative small grain size less than the INTERNAL::GRAIN_SIZE
// to make the whole available thread numbers get more balanced work load and a better cache location.
// The grain size here is chosen by the op benchmark to overcome the thread launch overhead
// Perhaps tweak this number for `put_`? This number was tweaked for `index_put`
constexpr int parallel_grain_size = 3000;
const bool is_contiguous = indexed.is_contiguous();
const auto numel = indexed.numel();
const auto offset_indexed = IndexToOffset(indexed);
auto* indexed_data = indexed.data_ptr<scalar_t>();
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto* iterated_data_bytes = data[0];
auto* index_data_bytes = data[1];
for (const auto elem : c10::irange(n)) {
(void)elem; //Suppress unused variable warning
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
auto& iterated = *reinterpret_cast<scalar_t*>(iterated_data_bytes);
TORCH_CHECK_INDEX(idx >= -numel && idx < numel,
"out of range: tried to access index ",
idx, " on a tensor of ", numel, " elements.");
if (idx < 0) {
idx += numel;
}
if (!is_contiguous) {
idx = offset_indexed.get(idx);
}
f(iterated, indexed_data, idx);
iterated_data_bytes += strides[0];
index_data_bytes += strides[1];
}
};
if (serial_execution) {
iter.serial_for_each(loop, {0, iter.numel()});
} else {
iter.for_each(loop, parallel_grain_size);
}
}
void put_kernel(
TensorIterator& iter,
const TensorBase & self,
const bool accumulate) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16,
iter.dtype(), "take_put_cpu", [&] {
// iter could be const, but for_each does not have a const version
if (accumulate) {
// nb. This deterministic issue the same as that of `index_put_kernel`
// See Note [Enabling Deterministic Operations]
// Parallel cpu_put_kernel with accumulation is nondeterministic, so we
// must enable serial execution if deterministic algorithms are enabled.
bool is_deterministic = at::globalContext().deterministicAlgorithms();
bool use_parallel_for = (!is_deterministic) && (
(iter.numel() >= internal::GRAIN_SIZE) && (at::get_num_threads() > 1));
if (use_parallel_for && iter.dtype() == ScalarType::Float) {
cpu_take_put_kernel<float>(iter, self,
[](float& iterated, float* indexed, const int64_t idx) {
cpu_atomic_add_float(indexed+idx, iterated);
});
} else {
// TODO: investigate parallelization of the accumulate kernel.
// Unlike the non-accumulate case, this needs to be thread-safe.
cpu_take_put_kernel<scalar_t>(iter, self,
[](scalar_t& iterated, scalar_t* indexed, const int64_t idx) {
indexed[idx] += iterated;
},
/*serial_execution=*/true);
}
} else {
cpu_take_put_kernel<scalar_t>(iter, self,
[](scalar_t& iterated, scalar_t* indexed, const int64_t idx) {
indexed[idx] = iterated;
});
}
});
}
void take_kernel(
TensorIterator& iter,
const TensorBase & input) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16,
iter.dtype(), "take_cpu", [&] {
cpu_take_put_kernel<scalar_t>(iter, input,
[](scalar_t& iterated, scalar_t* indexed, const int64_t idx) {
iterated = indexed[idx];
});
});
}
void index_put_kernel(TensorIterator& iter, IntArrayRef index_size, IntArrayRef index_stride, bool accumulate) {
// NOTE: duplicate indices are only supported if accumulate is true.
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16,
iter.dtype(), "index_put", [&] {
// See Note [Enabling Deterministic Operations]
// Parallel cpu_index_kernel with accumulation is nondeterministic, so we
// must enable serial execution if deterministic algorithms are enabled.
const bool is_deterministic = at::globalContext().deterministicAlgorithms();
if (accumulate) {
bool use_parallel_for = (!is_deterministic) && (
(iter.numel() >= internal::GRAIN_SIZE) && (at::get_num_threads() > 1));
if (use_parallel_for && iter.dtype() == ScalarType::Float) {
cpu_index_kernel<float>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
cpu_atomic_add_float((float*)(dst + offset), *(float*)src);
});
} else {
// TODO: investigate parallelization of the accumulate kernel. Unlike the non-accumulate case,
// this needs to be thread-safe.
cpu_index_kernel<scalar_t>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset) += *(scalar_t*)src;
}, /*serial_execution=*/true);
}
} else {
cpu_index_kernel<scalar_t>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset) = *(scalar_t*)src;
}, /*serial_execution=*/is_deterministic);
}
});
}
void index_fill_kernel(
TensorIterator& iter,
int64_t dim,
int64_t self_dim_size,
int64_t self_dim_stride,
const Scalar& source) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16,
iter.dtype(), "index_fill_cpu", [&] {
auto fill_val = source.to<scalar_t>();
auto handle_nonzero_idx_stride = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[0];
auto* index_data_bytes = data[1];
for (const auto elem : c10::irange(n)) {
(void)elem; //Suppress unused variable warning
auto* self_data = reinterpret_cast<scalar_t*>(self_data_bytes);
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
TORCH_CHECK_INDEX(idx >= -self_dim_size && idx < self_dim_size,
"index ", idx, " is out of bounds for dimension ",
dim, " with size ", self_dim_size);
if (idx < 0) {
idx += self_dim_size;
}
self_data[idx * self_dim_stride] = fill_val;
self_data_bytes += strides[0];
index_data_bytes += strides[1];
}
};
auto handle_zero_idx_stride = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[0];
auto* index_data_bytes = data[1];
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
TORCH_CHECK_INDEX(idx >= -self_dim_size && idx < self_dim_size,
"index ", idx, " is out of bounds for dimension ",
dim, " with size ", self_dim_size);
if (idx < 0) {
idx += self_dim_size;
}
for (const auto elem : c10::irange(n)) {
(void)elem; //Suppress unused variable warning
auto* self_data = reinterpret_cast<scalar_t*>(self_data_bytes);
self_data[idx * self_dim_stride] = fill_val;
self_data_bytes += strides[0];
}
};
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto idx_stride = strides[1];
if (idx_stride) {
handle_nonzero_idx_stride(data, strides, n);
}
else {
handle_zero_idx_stride(data, strides, n);
}
};
iter.for_each(loop);
});
}
void index_copy_kernel(
TensorIterator& iter,
int64_t dim,
int64_t self_dim_size,
int64_t self_dim_stride) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16,
iter.dtype(), "index_copy_cpu", [&] {
auto handle_nonzero_idx_stride = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[0];
auto* index_data_bytes = data[1];
auto* source_data_bytes = data[2];
for (const auto elem : c10::irange(n)) {
(void)elem; //Suppress unused variable warning
auto* self_data = reinterpret_cast<scalar_t*>(self_data_bytes);
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
auto* source_data = reinterpret_cast<scalar_t*>(source_data_bytes);
TORCH_CHECK_INDEX(idx >= 0 && idx < self_dim_size,
"index_copy_(): index ", idx, " is out of bounds for dimension ",
dim, " with size ", self_dim_size);
self_data[idx * self_dim_stride] = *source_data;
self_data_bytes += strides[0];
index_data_bytes += strides[1];
source_data_bytes += strides[2];
}
};
auto handle_zero_idx_stride = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[0];
auto* index_data_bytes = data[1];
auto* source_data_bytes = data[2];
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
TORCH_CHECK_INDEX(idx >= 0 && idx < self_dim_size,
"index_copy_(): index ", idx, " is out of bounds for dimension ",
dim, " with size ", self_dim_size);
for (const auto elem : c10::irange(n)) {
(void)elem; //Suppress unused variable warning
auto* self_data = reinterpret_cast<scalar_t*>(self_data_bytes);
auto* source_data = reinterpret_cast<scalar_t*>(source_data_bytes);
self_data[idx * self_dim_stride] = *source_data;
self_data_bytes += strides[0];
source_data_bytes += strides[2];
}
};
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto idx_stride = strides[1];
if (idx_stride) {
handle_nonzero_idx_stride(data, strides, n);
}
else {
handle_zero_idx_stride(data, strides, n);
}
};
bool is_deterministic = at::globalContext().deterministicAlgorithms();
if (is_deterministic) {
iter.serial_for_each(loop, {0, iter.numel()});
} else {
iter.for_each(loop);
}
});
}
template <typename scalar_t, typename mask_t>
void cpu_masked_fill_kernel(TensorIterator& iter, scalar_t value) {
auto is_mask_bool = std::is_same<mask_t, bool>::value;
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
char* dst = data[0];
char* mask = data[1];
for (const auto i : c10::irange(n)) {
mask_t mask_value = *(mask_t*)(mask + strides[1] * i);
if (!is_mask_bool) {
TORCH_CHECK(mask_value == 0 || mask_value == 1, "Mask tensor can take 0 and 1 values only");
}
if (mask_value) {
*(scalar_t*)(dst + strides[0] * i) = value;
}
}
};
iter.for_each(loop);
}
void masked_fill_kernel(TensorIterator& iter, const Scalar& value) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half,
iter.dtype(), "masked_fill", [&] {
scalar_t scalar_val = value.to<scalar_t>();
auto mask_dtype = iter.input_dtype(0);
if (mask_dtype == ScalarType::Bool) {
cpu_masked_fill_kernel<scalar_t, bool>(iter, scalar_val);
} else {
cpu_masked_fill_kernel<scalar_t, unsigned char>(iter, scalar_val);
}
});
}
template <typename scalar_t, typename mask_t>
void cpu_masked_scatter_kernel(TensorIterator& iter, const TensorBase& source) {
auto is_mask_bool = std::is_same<mask_t, bool>::value;
std::ptrdiff_t source_cntr = 0;
scalar_t* source_ptr = source.data_ptr<scalar_t>();
auto numel = source.numel();
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
char* dst = data[0];
const int64_t dst_stride = strides[0];
char* mask = data[1];
const int64_t mask_stride = strides[1];
for (const auto i : c10::irange(n)) {
mask_t mask_value = *(mask_t*)(mask + mask_stride * i);
if (!is_mask_bool) {
TORCH_CHECK(mask_value <= static_cast<mask_t>(1), "Mask tensor can take 0 and 1 values only");
}
if (mask_value) {
TORCH_CHECK(source_cntr < numel, "Number of elements of source < number of ones in mask");
*(scalar_t*)(dst + dst_stride * i) = *(source_ptr);
source_ptr++;
source_cntr++;
}
}
};
iter.serial_for_each(loop, {0, iter.numel()});
}
void masked_scatter_kernel(TensorIterator& iter, const TensorBase& source) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
ScalarType::Bool,
ScalarType::BFloat16,
ScalarType::Half,
iter.dtype(),
"masked_scatter",
[&] {
auto mask_dtype = iter.input_dtype(0);
if (mask_dtype == ScalarType::Bool) {
cpu_masked_scatter_kernel<scalar_t, bool>(iter, source);
} else {
cpu_masked_scatter_kernel<scalar_t, unsigned char>(iter, source);
}
});
}
template <typename scalar_t, typename mask_t, typename func_t>
void cpu_masked_select_serial_kernel(TensorIterator& iter, const func_t& f) {
auto is_mask_bool = std::is_same<mask_t, bool>::value;
int64_t offset = 0;
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
char* dst = data[0];
char* src = data[1];
char* mask = data[2];
for (const auto i : c10::irange(n)) {
mask_t mask_value = *(mask_t*)(mask + strides[2] * i);
if (!is_mask_bool) {
TORCH_CHECK(mask_value == 0 || mask_value == 1, "Mask tensor can take 0 and 1 values only");
}
if (mask_value) {
int64_t offset_bytes = offset * sizeof(scalar_t);
f(dst, src + strides[1] * i, offset_bytes);
offset++;
}
}
};
iter.serial_for_each(loop, {0, iter.numel()});
}
void masked_select_serial_kernel(TensorIterator& iter, int64_t result_stride) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half,
iter.dtype(), "masked_select", [&] {
auto mask_dtype = iter.input_dtype(1);
if (mask_dtype == ScalarType::Bool) {
cpu_masked_select_serial_kernel<scalar_t, bool>(iter, [result_stride](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset*result_stride) = *(scalar_t*)src;
});
} else {
cpu_masked_select_serial_kernel<scalar_t, unsigned char>(iter, [result_stride](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset*result_stride) = *(scalar_t*)src;
});
}
});
}
template <typename scalar_t, typename mask_t, typename func_t>
void cpu_masked_select_kernel(TensorIterator& iter, const func_t& f) {
auto is_mask_bool = std::is_same<mask_t, bool>::value;
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
char* dst = data[0];
char* src = data[1];
char* mask = data[2];
char* mask_prefix_sum = data[3];
for (const auto i : c10::irange(n)) {
mask_t mask_value = *(mask_t*)(mask + strides[2] * i);
if (!is_mask_bool) {
TORCH_CHECK(mask_value == 0 || mask_value == 1, "Mask tensor can take 0 and 1 values only");
}
if (mask_value) {
int64_t offset = *(int64_t*)(mask_prefix_sum + strides[3] * i);
int64_t offset_bytes = (offset - 1) * sizeof(scalar_t);
f(dst, src + strides[1] * i, offset_bytes);
}
}
};
iter.for_each(loop);
}
void masked_select_kernel(TensorIterator& iter, int64_t result_stride) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half,
iter.dtype(), "masked_select", [&] {
auto mask_dtype = iter.input_dtype(1);
if (mask_dtype == ScalarType::Bool) {
cpu_masked_select_kernel<scalar_t, bool>(iter, [result_stride](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset*result_stride) = *(scalar_t*)src;
});
} else {
cpu_masked_select_kernel<scalar_t, unsigned char>(iter, [result_stride](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset*result_stride) = *(scalar_t*)src;
});
}
});
}
void flip_kernel(TensorIterator& iter, const bool quantized) {
if (quantized) {
AT_DISPATCH_QINT_AND_SUB_BYTE_TYPES(iter.dtype(), "flip_quantized_cpu",
[&iter] { cpu_kernel(iter,
[](scalar_t a, scalar_t /*dummy input*/) -> scalar_t {
return a;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kBool, kHalf, kBFloat16, iter.dtype(), "flip_cpu",
[&iter] { cpu_kernel_vec(iter,
[](scalar_t a, scalar_t /*dummy input*/) -> scalar_t {
return a;
},
[](Vectorized<scalar_t> a, Vectorized<scalar_t> /*dummy input*/) -> Vectorized<scalar_t> {
return a;
});
});
}
}
} // anonymous namespace
REGISTER_DISPATCH(index_stub, &index_kernel);
REGISTER_DISPATCH(index_fill_stub, &index_fill_kernel);
REGISTER_DISPATCH(index_copy_stub, &index_copy_kernel);
REGISTER_DISPATCH(index_put_stub, &index_put_kernel);
REGISTER_DISPATCH(put_stub, &put_kernel);
REGISTER_DISPATCH(take_stub, &take_kernel);
REGISTER_DISPATCH(masked_fill_stub, &masked_fill_kernel);
REGISTER_DISPATCH(masked_select_serial_stub, &masked_select_serial_kernel);
REGISTER_DISPATCH(masked_select_stub, &masked_select_kernel);
REGISTER_DISPATCH(masked_scatter_stub, &masked_scatter_kernel);
REGISTER_DISPATCH(flip_stub, &flip_kernel);
}} // namespace at::native