forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SumKernel.cpp
645 lines (550 loc) · 21.9 KB
/
SumKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/ReduceOps.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Reduce.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/irange.h>
#include <algorithm>
namespace at {
namespace native {
namespace {
// Load vector from a smaller type (more elements) to a larger type (fewer elements),
// reducing neighboring elements until it fits into the vector size.
template <typename acc_t, typename scalar_t, typename F>
Vectorized<acc_t> load_reduce_vec(const scalar_t* data, F reduce, acc_t ident) {
using vec_t = Vectorized<scalar_t>;
using vacc_t = Vectorized<acc_t>;
static_assert(vacc_t::size() <= vec_t::size(), "");
const auto val = vec_t::loadu(data);
alignas(64) std::array<scalar_t, vec_t::size()> values;
val.store(values.data());
constexpr int vstride = vec_t::size() / vacc_t::size();
alignas(64) std::array<acc_t, vacc_t::size()> acc;
acc.fill(ident);
for (const auto k : c10::irange(vstride)) {
for (const auto i : c10::irange(vacc_t::size())) {
acc[i] = reduce(acc[i], values[i * vstride + k]);
}
}
return vacc_t::loadu(acc.data());
}
template <typename scalar_t>
struct LoadPolicy {
static constexpr int64_t memsize() {
return sizeof(scalar_t);
}
static scalar_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto *ptr = reinterpret_cast<const scalar_t*>(data + index * stride);
return *ptr;
}
};
template <typename scalar_t>
struct LoadPolicy<Vectorized<scalar_t>> {
static constexpr int64_t memsize() {
return sizeof(scalar_t) * Vectorized<scalar_t>::size();
}
static Vectorized<scalar_t> load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto *ptr = data + index * stride;
return Vectorized<scalar_t>::loadu(ptr);
}
};
/* When summing float16 or BFloat16, addition has to be performed in float since
* that's all the hardware supports. These cast-load policies ensure the entire sum
* loop is done in float which improves both performance and accuracy.
*/
template <typename scalar_t, typename acc_t>
struct CastLoadPolicy {
static constexpr int64_t memsize() {
return sizeof(scalar_t);
}
static acc_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
const auto val = LoadPolicy<scalar_t>::load(data, stride, index);
return acc_t(val);
}
};
template <typename scalar_t>
struct CastLoadPolicy<scalar_t, scalar_t>:
LoadPolicy<scalar_t> {
};
// For inner sum, load full vec_t then sum partials down to vacc_t size
template <typename vec_t, typename vacc_t>
struct InnerSumCastLoadPolicy {
using scalar_t = typename vec_t::value_type;
using acc_t = typename vacc_t::value_type;
static constexpr int64_t memsize() {
return LoadPolicy<vec_t>::memsize();
}
static vacc_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto ptr = reinterpret_cast<const scalar_t*>(data + stride * index);
return load_reduce_vec<acc_t>(ptr, [](acc_t a, scalar_t b) {
return a + b;
}, acc_t(0));
}
};
template <typename scalar_t>
struct InnerSumCastLoadPolicy<scalar_t, scalar_t>:
LoadPolicy<scalar_t> {
};
template <>
struct InnerSumCastLoadPolicy<Vectorized<c10::BFloat16>, Vectorized<float>> {
using vec_t = Vectorized<c10::BFloat16>;
using vacc_t = Vectorized<float>;
static constexpr int64_t memsize() {
return LoadPolicy<vec_t>::memsize();
}
static vacc_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto ptr = reinterpret_cast<const c10::BFloat16*>(data + stride * index);
vacc_t first, second;
vec::load_fp32_from_bf16(ptr, first, second);
return first + second;
}
};
// For outer sum, load a partial vec_t of size vacc_t then cast to vacc_t
template <typename vec_t, typename vacc_t>
struct OuterSumCastLoadPolicy {
using scalar_t = typename vec_t::value_type;
using acc_t = typename vacc_t::value_type;
static constexpr int64_t memsize() {
return sizeof(scalar_t) * vacc_t::size();
}
static vacc_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
static_assert(vacc_t::size() <= vec_t::size(), "");
const auto val = vec_t::loadu(data + stride * index, vacc_t::size());
alignas(64) scalar_t values[vec_t::size()];
val.store(values);
alignas(64) acc_t acc[vacc_t::size()];
for (const auto i : c10::irange(vacc_t::size())) {
acc[i] = values[i];
}
return vacc_t::loadu(acc);
}
};
template <>
struct OuterSumCastLoadPolicy<Vectorized<c10::BFloat16>, Vectorized<float>> {
using vec_t = Vectorized<c10::BFloat16>;
using vacc_t = Vectorized<float>;
static constexpr int64_t memsize() {
return sizeof(c10::BFloat16) * vacc_t::size();
}
static vacc_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto ptr = reinterpret_cast<const c10::BFloat16*>(data + stride * index);
vacc_t values;
vec::load_fp32_from_bf16(ptr, values);
return values;
}
};
template <typename scalar_t>
struct OuterSumCastLoadPolicy<scalar_t, scalar_t>:
LoadPolicy<scalar_t> {
};
/* To implement nansum, augment the load operation to mask out nans before
* entering the normal sum loop.
*/
template <typename scalar_t>
struct NanSumLoadPolicy {
static constexpr int64_t memsize() {
return sizeof(scalar_t);
}
static scalar_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto val = LoadPolicy<scalar_t>::load(data, stride, index);
return at::_isnan(val) ? scalar_t(0) : val;
}
};
template <typename scalar_t>
struct NanSumLoadPolicy<Vectorized<scalar_t>> {
using vec_t = Vectorized<scalar_t>;
static constexpr int64_t memsize() {
return LoadPolicy<vec_t>::memsize();
}
static vec_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto val = LoadPolicy<vec_t>::load(data, stride, index);
return vec_t::blendv(val, vec_t(0), val.isnan());
}
};
template <typename scalar_t, typename acc_t>
struct NanSumCastLoadPolicy {
static constexpr int64_t memsize() {
return sizeof(scalar_t);
}
static acc_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto val = CastLoadPolicy<scalar_t, acc_t>::load(data, stride, index);
return at::_isnan(val) ? acc_t(0) : val;
}
};
template <typename vec_t, typename vacc_t>
struct InnerNanSumCastLoadPolicy {
using scalar_t = typename vec_t::value_type;
using acc_t = typename vacc_t::value_type;
static constexpr int64_t memsize() {
return LoadPolicy<vec_t>::memsize();
}
static vacc_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto ptr = reinterpret_cast<const scalar_t*>(data + stride * index);
return load_reduce_vec<acc_t>(ptr, [](acc_t a, scalar_t b) {
return at::_isnan(b) ? a : a + b;
}, acc_t(0));
}
};
template <typename scalar_t>
struct InnerNanSumCastLoadPolicy<scalar_t, scalar_t> :
NanSumLoadPolicy<scalar_t> {
};
template <>
struct InnerNanSumCastLoadPolicy<Vectorized<c10::BFloat16>, Vectorized<float>> {
using vec_t = Vectorized<c10::BFloat16>;
using vacc_t = Vectorized<float>;
static constexpr int64_t memsize() {
return LoadPolicy<vec_t>::memsize();
}
static vacc_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto ptr = reinterpret_cast<const c10::BFloat16*>(data + stride * index);
vacc_t first, second;
vec::load_fp32_from_bf16(ptr, first, second);
const vacc_t zero(0);
return (vacc_t::blendv(first, zero, first.isnan()) +
vacc_t::blendv(second, zero, second.isnan()));
}
};
template <typename vec_t, typename vacc_t>
struct OuterNanSumCastLoadPolicy {
static constexpr int64_t memsize() {
return OuterSumCastLoadPolicy<vec_t, vacc_t>::memsize();
}
static vacc_t load(const char * C10_RESTRICT data, int64_t stride, int64_t index) {
auto val = OuterSumCastLoadPolicy<vec_t, vacc_t>::load(data, stride, index);
return vacc_t::blendv(val, vacc_t(0), val.isnan());
}
};
template <typename scalar_t, typename acc_t>
struct CastStoreAccumulate {
static void store(char * C10_RESTRICT data, int64_t stride, int64_t index, acc_t value) {
auto * ptr = reinterpret_cast<scalar_t*>(data + index * stride);
*ptr += value;
}
};
template <typename StorePolicy, typename scalar_t>
static void store(char * C10_RESTRICT data, int64_t stride, int64_t index, scalar_t value) {
StorePolicy::store(data, stride, index, value);
}
template <typename StorePolicy, typename scalar_t, size_t numel>
static void store(char * C10_RESTRICT data, int64_t stride, int64_t index,
const std::array<scalar_t, numel> &values) {
auto *base_ptr = data + stride * index;
for (const auto k : c10::irange(numel)) {
auto val = values[k];
StorePolicy::store(base_ptr, stride, k, val);
}
}
template <typename StorePolicy, typename scalar_t>
static void store(char * C10_RESTRICT data, int64_t stride, int64_t index,
const Vectorized<scalar_t> &values) {
using vec_t = Vectorized<scalar_t>;
alignas(64) std::array<scalar_t, vec_t::size()> array_values;
values.store(array_values.data());
store<StorePolicy>(data, stride, index, array_values);
}
/** Simultaneously sum over n rows at once
This algorithm calculates the sum without loss of precision over large axes. It
does this by chunking the sum into groups of 16 or more elements. The sums of
these chunks are also summed in chunks and so on until there is just a single sum
value remaining. This means only numbers of a similar order of magnitude are
added together, thus minimising rounding errors.
This is done in a single linear pass over the data and with O(1) extra storage.
A simplified recursive implementation would look like this:
scalar_t row_sum(const scalar_t * data, int64_t n) {
// Note, in practice the chunk size can increase with n
// This allows the recursion depth to be limited to O(1).
constexpr int64_t min_chunk_size = 16;
scalar_t sum = 0;
if (n <= min_chunk_size) {
// Recursive base case, calculate a simple running sum
for (const auto i : c10::irange(n)) {
sum += data[i];
}
return sum;
}
// Recursively sum larger chunks of elements
const int64_t chunk_size = std::max(divup(n, min_chunk_size), min_chunk_size);
for (int64_t i = 0; i < n; i += chunk_size) {
sum += row_sum(data + i, std::min(chunk_size, n - i));
}
return sum;
}
*/
template <typename scalar_t, int64_t nrows, typename LoadPolicy>
std::array<scalar_t, nrows> multi_row_sum(
const char * C10_RESTRICT in_data,
const int64_t row_stride,
const int64_t col_stride,
const int64_t size) {
constexpr int64_t num_levels = 4;
const int64_t level_power =
std::max(int64_t(4), utils::CeilLog2(size) / num_levels);
const int64_t level_step = (1 << level_power);
const int64_t level_mask = level_step - 1;
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
scalar_t acc[num_levels][nrows];
std::fill_n(&acc[0][0], num_levels * nrows, scalar_t(0));
int64_t i = 0;
for (; i + level_step <= size;) {
for (int64_t j = 0; j < level_step; ++j, ++i) {
const char * sum_base = in_data + i * row_stride;
#if !defined(COMPILING_FOR_MIN_SIZE)
# pragma unroll
#endif
for (const auto k : c10::irange(nrows)) {
acc[0][k] += LoadPolicy::load(sum_base, col_stride, k);
}
}
for (const auto j : c10::irange(1, num_levels)) {
#if !defined(COMPILING_FOR_MIN_SIZE)
# pragma unroll
#endif
for (const auto k : c10::irange(nrows)) {
acc[j][k] += acc[j-1][k];
acc[j-1][k] = scalar_t(0);
}
const auto mask = (level_mask << (j * level_power));
if ((i & mask) != 0) {
break;
}
}
}
for (; i < size; ++i) {
const char * sum_base = in_data + i * row_stride;
#if !defined(COMPILING_FOR_MIN_SIZE)
# pragma unroll
#endif
for (const auto k : c10::irange(nrows)) {
acc[0][k] += LoadPolicy::load(sum_base, col_stride, k);
}
}
for (const auto j : c10::irange(1, num_levels)) {
#if !defined(COMPILING_FOR_MIN_SIZE)
# pragma unroll
#endif
for (const auto k : c10::irange(nrows)) {
acc[0][k] += acc[j][k];
}
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
std::array<scalar_t, nrows> ret;
for (const auto k : c10::irange(nrows)) {
ret[k] = acc[0][k];
}
return ret;
}
template <typename scalar_t, typename LoadPolicy>
scalar_t row_sum(const char * C10_RESTRICT in_data,
const int64_t in_stride, const int64_t size) {
constexpr int64_t ilp_factor = 4;
// Interpret row as a (-1, ilp_factor) shaped array to find partial sums
const int64_t size_ilp = size / ilp_factor;
auto partial_sums = multi_row_sum<scalar_t, ilp_factor, LoadPolicy>(
in_data, in_stride * ilp_factor, in_stride, size_ilp);
for (int64_t i = size_ilp * ilp_factor; i < size; ++i) {
partial_sums[0] += LoadPolicy::load(in_data, in_stride, i);
}
for (const auto k : c10::irange(1, ilp_factor)) {
partial_sums[0] += partial_sums[k];
}
return partial_sums[0];
}
template <typename acc_t, typename VecLoadPolicy, typename ScalarLoadPolicy, typename StorePolicy>
void vectorized_inner_sum(
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
char * C10_RESTRICT data[2], int64_t outer_stride, int64_t out_stride,
int64_t size0, int64_t size1) {
using vacc_t = Vectorized<acc_t>;
constexpr int64_t vec_stride = VecLoadPolicy::memsize();
constexpr int64_t scalar_stride = ScalarLoadPolicy::memsize();
constexpr int64_t vec_numel = vec_stride / scalar_stride;
const int64_t vec_size = size0 / vec_numel;
// Input is contiguous over the first (reduced) dimension
for (const auto j : c10::irange(size1)) {
const auto *row_in = data[1] + j * outer_stride;
auto vec_acc = row_sum<vacc_t, VecLoadPolicy>(row_in, vec_stride, vec_size);
acc_t final_acc = 0;
for (int64_t k = vec_size * vec_numel; k < size0; ++k) {
final_acc += ScalarLoadPolicy::load(row_in, scalar_stride, k);
}
alignas(64) std::array<acc_t, vacc_t::size()> partials{};
vec_acc.store(partials.data());
for (const auto k : c10::irange(partials.size())) {
final_acc += partials[k];
}
store<StorePolicy>(data[0], out_stride, j, final_acc);
}
}
template <typename acc_t, typename LoadPolicy, typename StorePolicy>
void scalar_inner_sum(
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
char * C10_RESTRICT data[2], int64_t in_strides[2], int64_t out_stride,
int64_t size0, int64_t size1) {
for (const auto j : c10::irange(size1)) {
const auto *row_in = data[1] + j * in_strides[1];
auto ans = row_sum<acc_t, LoadPolicy>(row_in, in_strides[0], size0);
store<StorePolicy>(data[0], out_stride, j, ans);
}
}
template <typename acc_t, typename VecLoadPolicy, typename ScalarLoadPolicy, typename StorePolicy>
void vectorized_outer_sum(
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
char * C10_RESTRICT data[2], int64_t inner_stride, int64_t out_stride,
int64_t size0, int64_t size1) {
using vacc_t = Vectorized<acc_t>;
constexpr int64_t scalar_stride = ScalarLoadPolicy::memsize();
constexpr int64_t vec_stride = VecLoadPolicy::memsize();
constexpr int64_t nrows = 4;
// Input is contiguous over the second (non-reduced) dimension
int64_t j = 0;
for (; j + nrows * vacc_t::size() <= size1; j += nrows * vacc_t::size()) {
const auto *row_in = data[1] + j * scalar_stride;
auto sums = multi_row_sum<vacc_t, nrows, VecLoadPolicy>(
row_in, inner_stride, vec_stride, size0);
for (const auto i : c10::irange(nrows)) {
const int64_t base_idx = j + i * vacc_t::size();
store<StorePolicy>(data[0], out_stride, base_idx, sums[i]);
}
}
for (; j + vacc_t::size() <= size1; j += vacc_t::size()) {
const auto *row_in = data[1] + j * scalar_stride;
const vacc_t sums = row_sum<vacc_t, VecLoadPolicy>(
row_in, inner_stride, size0);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
store<StorePolicy>(data[0], out_stride, j, sums);
}
for (; j < size1; ++j) {
const auto *row_in = data[1] + j * scalar_stride;
auto ans = row_sum<acc_t, ScalarLoadPolicy>(row_in, inner_stride, size0);
store<StorePolicy>(data[0], out_stride, j, ans);
}
}
template <typename acc_t, typename LoadPolicy, typename StorePolicy>
void scalar_outer_sum(
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
char * C10_RESTRICT data[2], int64_t in_strides[2], int64_t out_stride,
int64_t size0, int64_t size1) {
constexpr int64_t nrows = 4;
int64_t j = 0;
for (; j + (nrows - 1) < size1; j += nrows) {
const auto *row_in = data[1] + j * in_strides[1];
auto sums = multi_row_sum<acc_t, nrows, LoadPolicy>(
row_in, in_strides[0], in_strides[1], size0);
store<StorePolicy>(data[0], out_stride, j, sums);
}
for (; j < size1; ++j) {
const auto *row_in = data[1] + j * in_strides[1];
auto ans = row_sum<acc_t, LoadPolicy>(
row_in, in_strides[0], size0);
store<StorePolicy>(data[0], out_stride, j, ans);
}
}
// Custom floating point sum for better accuracy
template <bool ignore_nan, typename scalar_t>
void cascade_sum(TensorIterator &iter) {
iter.output_base().fill_(scalar_t(0));
iter.parallel_reduce(
[&](char** data, const int64_t* strides, int64_t size0, int64_t size1) {
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
int64_t in_strides[] = { strides[1], strides[3] };
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
int64_t out_strides[] = { strides[0], strides[2] };
// Move reduction to be the 1st dim
if (out_strides[0] != 0 && out_strides[1] == 0) {
std::swap(in_strides[0], in_strides[1]);
std::swap(out_strides[0], out_strides[1]);
std::swap(size0, size1);
}
// Special case? - not a true reduction
if (out_strides[0] != 0 && out_strides[1] != 0) {
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
int64_t outer_strides[] = { strides[2], strides[3] };
UNARY_OUTER_LOOP(data, outer_strides, size1, [&] {
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
char* ptrs[3] = { data[0], data[0], data[1] };
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
int64_t inner_strides[3] = { strides[0], strides[0], strides[1] };
c10::guts::if_constexpr<ignore_nan>(
[&](auto) {
basic_loop(ptrs, inner_strides, 0, size0, [](scalar_t a, scalar_t b) {
auto a_notnan = at::_isnan(a) ? scalar_t(0) : a;
auto b_notnan = at::_isnan(b) ? scalar_t(0) : b;
return a_notnan + b_notnan;
});
},
[&](auto) {
basic_loop(ptrs, inner_strides, 0, size0,
[](scalar_t a, scalar_t b) { return a + b; });
});
});
return;
}
const int64_t out_stride = out_strides[1];
TORCH_INTERNAL_ASSERT(out_strides[0] == 0);
using vec_t = Vectorized<scalar_t>;
using acc_t = at::acc_type<scalar_t, true>;
using vacc_t = Vectorized<acc_t>;
using ScalarLoadPolicy = std::conditional_t<
ignore_nan,
NanSumCastLoadPolicy<scalar_t, acc_t>,
CastLoadPolicy<scalar_t, acc_t>>;
using StorePolicy = CastStoreAccumulate<scalar_t, acc_t>;
if (in_strides[0] == sizeof(scalar_t) && size0 >= vec_t::size()) {
// Contiguous inner reduction
using VecLoadPolicy = std::conditional_t<
ignore_nan,
InnerNanSumCastLoadPolicy<vec_t, vacc_t>,
InnerSumCastLoadPolicy<vec_t, vacc_t>>;
vectorized_inner_sum<acc_t, VecLoadPolicy, ScalarLoadPolicy, StorePolicy>(
data, in_strides[1], out_stride, size0, size1);
} else if (in_strides[1] == sizeof(scalar_t) && size1 >= vec_t::size()) {
// Contiguous outer reduction
using VecLoadPolicy = std::conditional_t<
ignore_nan,
OuterNanSumCastLoadPolicy<vec_t, vacc_t>,
OuterSumCastLoadPolicy<vec_t, vacc_t>>;
vectorized_outer_sum<acc_t, VecLoadPolicy, ScalarLoadPolicy, StorePolicy>(
data, in_strides[0], out_stride, size0, size1);
} else if (in_strides[0] < in_strides[1]) {
scalar_inner_sum<acc_t, ScalarLoadPolicy, StorePolicy>(
data, in_strides, out_stride, size0, size1);
} else {
scalar_outer_sum<acc_t, ScalarLoadPolicy, StorePolicy>(
data, in_strides, out_stride, size0, size1);
}
});
}
void sum_kernel_impl(TensorIterator &iter) {
if (isIntegralType(iter.dtype(), /*includeBool=*/ true)) {
AT_DISPATCH_INTEGRAL_TYPES_AND(ScalarType::Bool, iter.dtype(), "sum_cpu",
[&] {
binary_kernel_reduce_vec(
iter, [=](scalar_t a, scalar_t b) -> scalar_t { return a + b; },
[=](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return a + b; });
});
return;
}
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
ScalarType::BFloat16, ScalarType::Half, iter.dtype(), "sum_cpu", [&] {
cascade_sum</*ignore_nan=*/false, scalar_t>(iter);
});
}
void nansum_kernel_impl(TensorIterator &iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(
ScalarType::BFloat16, ScalarType::Half, iter.dtype(), "nansum_cpu", [&] {
cascade_sum</*ignore_nan=*/true, scalar_t>(iter);
});
}
} // namespace (anonymous)
REGISTER_DISPATCH(sum_stub, &sum_kernel_impl);
// nansum on Float16 has poor accuracy with AVX2, and more so with AVX512.
// So until it's fixed, it won't be dispatched with AVX512. GH issue 59415.
#ifndef CPU_CAPABILITY_AVX512
REGISTER_DISPATCH(nansum_stub, &nansum_kernel_impl);
#else
REGISTER_NO_AVX512_DISPATCH(nansum_stub);
#endif
}} // namespace at::native