forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Size.cpp
232 lines (206 loc) · 8 KB
/
Size.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include <c10/util/irange.h>
#include <torch/csrc/Size.h>
#include <string>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/python_tuples.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
struct THPSize {
PyTupleObject tuple;
};
PyObject * THPSize_New(const torch::autograd::Variable& var)
{
if (!torch::jit::tracer::isTracing()) {
auto sizes = var.sizes();
return THPSize_NewFromSizes(var.dim(), sizes.data());
}
auto self = THPObjectPtr(THPSizeType.tp_alloc(&THPSizeType, var.dim()));
if (!self) throw python_error();
for (const auto i : c10::irange(var.dim())) {
PyObject *py_size_tensor = THPVariable_Wrap(torch::jit::tracer::getSizeOf(var, i));
if (!py_size_tensor) throw python_error();
PyTuple_SET_ITEM(self.get(), i, py_size_tensor);
}
return self.release();
}
PyObject * THPSize_NewFromSizes(int dim, const int64_t *sizes)
{
auto self = THPObjectPtr(THPSizeType.tp_alloc(&THPSizeType, dim));
if (!self) throw python_error();
THPUtils_packInt64Array(self, dim, sizes);
return self.release();
}
static bool isTracedZeroDimVar(PyObject *item) {
if (!THPVariable_Check(item)) return false;
auto & var = THPVariable_Unpack(item);
return var.dim() == 0 && torch::jit::tracer::getValueTrace(var);
}
static PyObject * THPSize_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
HANDLE_TH_ERRORS
THPObjectPtr self(PyTuple_Type.tp_new(type, args, kwargs));
if (self) {
for (Py_ssize_t i = 0; i < PyTuple_Size(self); ++i) {
PyObject *item = PyTuple_GET_ITEM(self.get(), i);
if (THPUtils_checkLong(item)) {
continue;
}
if (torch::jit::tracer::isTracing() && isTracedZeroDimVar(item)) {
continue;
}
// item.__index__() works with 0-dim tensors and tensors with one element
THPObjectPtr number(PyNumber_Index(item));
if (number && THPUtils_checkLong(number.get())) {
Py_INCREF(number.get());
auto status = PyTuple_SetItem(self, i, number.get());
if (status != 0) {
throw python_error();
}
continue;
}
return PyErr_Format(PyExc_TypeError,
"torch.Size() takes an iterable of 'int' (item %zd is '%s')",
i, Py_TYPE(item)->tp_name);
}
}
return self.release();
END_HANDLE_TH_ERRORS
}
static PyObject * THPSize_repr(THPSize *self)
{
HANDLE_TH_ERRORS
std::string repr("torch.Size([");
for (Py_ssize_t i = 0; i < PyTuple_Size((PyObject*)self); ++i) {
if (i != 0) {
repr += ", ";
}
repr += std::to_string(THPUtils_unpackLong(PyTuple_GET_ITEM(self, i)));
}
repr += "])";
return THPUtils_packString(repr);
END_HANDLE_TH_ERRORS
}
extern PyTypeObject THPSizeType;
template<typename FnType, FnType fn, typename ...Args>
static PyObject* wrap_tuple_fn(Args ... args)
{
THPObjectPtr result((*fn)(std::forward<Args>(args)...));
if (!result) return nullptr;
if (PyTuple_Check(result.get())) {
return PyObject_CallFunctionObjArgs((PyObject*)&THPSizeType, result.get(), nullptr);
}
return result.release();
}
// We use an anonymous namespace instead of static to work around
// (what @peterjc123 think is) a bug in Visual Studio
namespace {
auto sq_concat = PyTuple_Type.tp_as_sequence->sq_concat;
auto sq_repeat = PyTuple_Type.tp_as_sequence->sq_repeat;
binaryfunc mp_subscript = PyTuple_Type.tp_as_mapping->mp_subscript;
}
static PySequenceMethods THPSize_as_sequence = {
nullptr, /* sq_length */
wrap_tuple_fn<decltype(&sq_concat), &sq_concat>,
wrap_tuple_fn<decltype(&sq_repeat), &sq_repeat>,
nullptr, /* sq_item */
nullptr, /* sq_slice */
nullptr, /* sq_ass_item */
nullptr, /* sq_ass_slice */
nullptr /* sq_contains */
};
static PyMappingMethods THPSize_as_mapping = {
nullptr, /* mp_length */
wrap_tuple_fn<decltype(&mp_subscript), &mp_subscript>,
nullptr
};
static PyObject *THPSize_numel(PyObject *_self, PyObject *noargs)
{
HANDLE_TH_ERRORS
auto self = (THPSize*)_self;
int64_t numel = 1;
for (Py_ssize_t i = 0; i < PyTuple_Size((PyObject*)self); ++i) {
numel *= THPUtils_unpackLong(PyTuple_GET_ITEM(self, i));
}
return THPUtils_packInt64(numel);
END_HANDLE_TH_ERRORS
}
static PyObject *THPSize_reduce(PyObject *_self, PyObject *noargs)
{
HANDLE_TH_ERRORS
auto self = (THPSize*)_self;
auto ret = THPObjectPtr{PyTuple_New(2)};
if (!ret) throw python_error();
auto obj = (PyObject*)(&THPSizeType);
Py_INCREF(&THPSizeType);
PyTuple_SET_ITEM(ret.get(), 0, obj);
THPObjectPtr t(PyTuple_New(PyTuple_Size((PyObject*)self)));
if (!t) throw python_error();
for (Py_ssize_t i = 0; i < PyTuple_Size((PyObject*)self); ++i) {
auto d = PyTuple_GET_ITEM(self, i);
Py_INCREF(d);
PyTuple_SET_ITEM(t.get(), i, d);
}
THPObjectPtr dims(Py_BuildValue("(O)", t.get()));
if (!dims) throw python_error();
PyTuple_SET_ITEM(ret.get(), 1, dims.release());
return ret.release();
END_HANDLE_TH_ERRORS
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
static PyMethodDef THPSize_methods[] = {
{"numel", THPSize_numel, METH_NOARGS, nullptr},
{"__reduce__", THPSize_reduce, METH_NOARGS, nullptr},
{nullptr}
};
PyTypeObject THPSizeType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch.Size", /* tp_name */
sizeof(THPSize), /* tp_basicsize */
0, /* tp_itemsize */
nullptr, /* tp_dealloc */
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
(reprfunc)THPSize_repr, /* tp_repr */
nullptr, /* tp_as_number */
&THPSize_as_sequence, /* tp_as_sequence */
&THPSize_as_mapping, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
nullptr, /* tp_doc */
nullptr, /* tp_traverse */
nullptr, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
THPSize_methods, /* tp_methods */
nullptr, /* tp_members */
nullptr, /* tp_getset */
&PyTuple_Type, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
THPSize_pynew, /* tp_new */
};
void THPSize_init(PyObject *module)
{
if (PyType_Ready(&THPSizeType) < 0) {
throw python_error();
}
Py_INCREF(&THPSizeType);
if (PyModule_AddObject(module, "Size", (PyObject*)&THPSizeType) < 0) {
throw python_error();
}
}