-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathinference_nyu.py
110 lines (89 loc) · 3.94 KB
/
inference_nyu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import os
import random
import torch
import torch.backends.cudnn as cudnn
# local libraries
from auxiliary import str2bool, fix_random_seed
from dataloaders import NYUCamMat, prepare_dataloader
from models import Model
from models.functional import depth2normal
from auxiliary import SaveImages
def main():
# CUDA settings
fix_random_seed(seed=46)
torch.backends.cudnn.benchmark = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Model
print("=> Creating model")
cudnn.benchmark = True
model = Model(cam_mat=NYUCamMat(), model_type=args.model_type,
loss_type="l1", normal_weight=0.5).to(device)
if args.pretrained_path != "":
print("=> using checkpoints")
model.load_state_dict(torch.load(args.pretrained_path))
# Dataset
print("=> Preparing dataloader")
test_dataloader = prepare_dataloader(args.data_path,
datatype_list=["test"],
batchsize=1,
workers=0,
img_size=(228, 304),
val_split_rate=0.01)["test"]
print('Test set\t', len(test_dataloader))
# Prepare result dir
if not os.path.exists(args.result_path):
os.mkdir(args.result_path)
# Prepare saver
img_saver = SaveImages(cmap_type="jet")
model.eval()
for idx, (scenes, gt_depths, mesh_list, _, _) in enumerate(test_dataloader):
print("{}/{}".format(idx, len(test_dataloader)))
batch_size, _, height, width = scenes.shape
# To gpu
scenes = scenes.to(device)
gt_depths = gt_depths.to(device)
# Load information
batchsize, _, height, width = scenes.shape
# Inference + loss calculation
with torch.no_grad():
tridepth = model(scenes, mesh_list)
# Convert tridepth format from depthmap to camera_coords and save it as obj-format.
if args.rep_type == "patch_cloud":
connect_th = None
elif args.rep_type == "mesh":
connect_th = 0.1
tpc_save_file = os.path.join(args.result_path, "{:06d}.obj".format(idx))
tridepth.save_into_obj(tpc_save_file, b_idx=0, texture="img", connect_th=connect_th)
# Calculate evaluation scores (and average it)
pred_depths = tridepth.render_depths(render_size=(height, width))
# Calculate normalmap
#inv_intrinsics = model.cam_mat(img_size=(height, width),
# inv_mat=True,
# t_tensor=True,
# batch_size=batch_size).to(device)
#gt_normals = depth2normal(gt_depths, inv_intrinsics)
#pred_normals = depth2normal(pred_depths, inv_intrinsics)
# Normalize [-1,1] -> [0,1]
#gt_normals = (gt_normals + 1.0) / 2.0
#pred_normals = (pred_normals + 1.0) / 2.0
# Save into file
img_save_file = os.path.join(args.result_path, "{:06d}.png".format(idx))
img_saver.reset()
img_saver.update_merged_image(scenes[0], gt_depths[0], pred_depths[0], tridepth.base_edges[0])
img_saver.save_merged_image(img_save_file)
exit()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# dir path
parser.add_argument('--data-path', default="~/datasets/nyudepthv2", type=str)
parser.add_argument('--pretrained-path', default="pretrained/weight_upconv.pth", type=str)
parser.add_argument('--model-type', type=str, default="upconv", choices=["simple", "upconv"])
parser.add_argument('--seed', default=46, type=int)
# output representation type
parser.add_argument('--rep-type', type=str, default="patch_cloud", choices=["patch_cloud", "mesh"])
# output path
parser.add_argument('--result-path', type=str, default="result")
args = parser.parse_args()
print(args)
main()