-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
86 lines (71 loc) · 3.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import argparse
import torch
import torch.backends.cudnn as cudnn
from auxiliary import str2bool, fix_random_seed, prepare_logdir, save_arguments
from dataloaders import prepare_dataloader, NYUCamMat
from models import Model
from trainer import TriDepthTrainer
def main(args):
# CUDA settings
fix_random_seed(seed=46)
torch.backends.cudnn.benchmark = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Logger
log_dir = prepare_logdir(log_path=args.log_path, descript=args.theme)
save_arguments(args, log_dir)
# Model
print("=> Creating model")
cudnn.benchmark = True
model = Model(cam_mat=NYUCamMat(), model_type=args.model_type,
loss_type="l1", normal_weight=0.5).to(device)
# Optimizer
print("=> Preparing optimizer")
optimizer = torch.optim.SGD(model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# Dataset
print("=> Preparing dataloader")
dataloader_dic = prepare_dataloader(args.data_path,
datatype_list=["train", "val", "test"],
batchsize=args.batchsize,
workers=args.workers,
img_size=(228, 304),
val_split_rate=0.01)
print('Train set\t', len(dataloader_dic["train"]))
print('Validation set\t', len(dataloader_dic["val"]))
print('Test set\t', len(dataloader_dic["test"]))
# Start training
print("=> Start training!!!")
trainer = TriDepthTrainer(model, optimizer, dataloader_dic,
trainer_args={"log_root": log_dir,
"nepoch": args.nepoch,
"print_freq": args.print_freq,
"img_print_freq": args.img_print_freq,
"print_progress": args.print_progress},
device=device)
trainer.load_checkpoint(args.pretrained_path)
trainer.run()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Basic settings
parser.add_argument('--theme', type=str, default="test", help='Theme description of this experiment')
parser.add_argument('--log-path', type=str, default="log")
# Basic settings
parser.add_argument('--data-path', type=str, default="~/datasets/nyudepthv2")
parser.add_argument('--model-type', type=str, default="simple", choices=["simple", "upconv"])
parser.add_argument('--pretrained-path', type=str, default="")
# Optimizer setting
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=1e-4)
# Train settings
parser.add_argument('--batchsize', type=int, default=2)
parser.add_argument('--workers', type=int, default=0)
parser.add_argument('--nepoch', type=int, default=3)
parser.add_argument('--print-freq', type=int, default=3)
parser.add_argument('--img-print-freq', type=int, default=3)
parser.add_argument('--print-progress', type=str2bool, default="true")
args = parser.parse_args()
print(args)
main(args)