forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaverage_mode.py
37 lines (32 loc) · 1.17 KB
/
average_mode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def mode(input_list: list) -> list: # Defining function "mode."
"""This function returns the mode(Mode as in the measures of
central tendency) of the input data.
The input list may contain any Datastructure or any Datatype.
>>> input_list = [2, 3, 4, 5, 3, 4, 2, 5, 2, 2, 4, 2, 2, 2]
>>> mode(input_list)
[2]
>>> input_list = [3, 4, 5, 3, 4, 2, 5, 2, 2, 4, 4, 2, 2, 2]
>>> mode(input_list)
[2]
>>> input_list = [3, 4, 5, 3, 4, 2, 5, 2, 2, 4, 4, 4, 2, 2, 4, 2]
>>> mode(input_list)
[2, 4]
>>> input_list = ["x", "y", "y", "z"]
>>> mode(input_list)
['y']
>>> input_list = ["x", "x" , "y", "y", "z"]
>>> mode(input_list)
['x', 'y']
"""
result = list() # Empty list to store the counts of elements in input_list
for x in input_list:
result.append(input_list.count(x))
if not result:
return []
y = max(result) # Gets the maximum value in the result list.
# Gets values of modes
result = {input_list[i] for i, value in enumerate(result) if value == y}
return sorted(result)
if __name__ == "__main__":
import doctest
doctest.testmod()