-
Notifications
You must be signed in to change notification settings - Fork 7
/
TAS_BERT_separate.py
576 lines (494 loc) · 20.4 KB
/
TAS_BERT_separate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# coding=utf-8
"""CUDA_VISIBLE_DEVICES=0 python TAS_BERT_separate.py"""
from __future__ import absolute_import, division, print_function
import argparse
import collections
import logging
import os
import random
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, SequentialSampler
from tqdm import tqdm, trange
import tokenization
from modeling_split import BertConfig, BertForTABSAJoint_AS, BertForTABSAJoint_T, BertForTABSAJoint_CRF_AS, BertForTABSAJoint_CRF_T
from optimization import BERTAdam
import tensorflow as tf
import datetime
from processor import Semeval_Processor
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id, ner_label_ids, ner_mask):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.ner_label_ids = ner_label_ids
self.ner_mask = ner_mask
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, ner_label_list, tokenize_method):
"""Loads a data file into a list of `InputBatch`s."""
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
#here start with zero this means that "[PAD]" is zero
ner_label_map = {}
for (i, label) in enumerate(ner_label_list):
ner_label_map[label] = i
features = []
all_tokens = []
for (ex_index, example) in enumerate(tqdm(examples)):
if tokenize_method == "word_split":
# word_split
word_num = 0
tokens_a = tokenizer.tokenize(example.text_a)
ner_labels_org = example.ner_labels_a.strip().split()
ner_labels_a = []
token_bias_num = 0
for (i, token) in enumerate(tokens_a):
if token.startswith('##'):
if ner_labels_org[i - 1 - token_bias_num] in ['O', 'T', 'I']:
ner_labels_a.append(ner_labels_org[i - 1 - token_bias_num])
else:
ner_labels_a.append('I')
token_bias_num += 1
else:
word_num += 1
ner_labels_a.append(ner_labels_org[i - token_bias_num])
assert word_num == len(ner_labels_org)
assert len(ner_labels_a) == len(tokens_a)
else:
# prefix_match or unk_replace
tokens_a = tokenizer.tokenize(example.text_a)
ner_labels_a = example.ner_labels_a.strip().split()
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, ner_labels_a, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
ner_labels_a = ner_labels_a[0:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
ner_label_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
ner_label_ids.append(ner_label_map["[CLS]"])
try:
for (i, token) in enumerate(tokens_a):
tokens.append(token)
segment_ids.append(0)
ner_label_ids.append(ner_label_map[ner_labels_a[i]])
except:
print(tokens_a)
print(ner_labels_a)
ner_mask = [1] * len(ner_label_ids)
token_length = len(tokens)
tokens.append("[SEP]")
segment_ids.append(0)
ner_label_ids.append(ner_label_map["[PAD]"])
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
ner_label_ids.append(ner_label_map["[PAD]"])
tokens.append("[SEP]")
segment_ids.append(1)
ner_label_ids.append(ner_label_map["[PAD]"])
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
ner_label_ids.append(ner_label_map["[PAD]"])
while len(ner_mask) < max_seq_length:
ner_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(ner_mask) == max_seq_length
assert len(ner_label_ids) == max_seq_length
label_id = label_map[example.label]
features.append(
InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
ner_label_ids=ner_label_ids,
ner_mask=ner_mask))
all_tokens.append(tokens[0:token_length])
return features, all_tokens
def _truncate_seq_pair(tokens_a, tokens_b, ner_labels_a, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
ner_labels_a.pop()
else:
tokens_b.pop()
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default='data/semeval2015/three_joint/TO/',
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--output_dir",
default='results/semeval2015/loss_split/TO/LPM_TO_AS',
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
parser.add_argument("--vocab_file",
default='uncased_L-12_H-768_A-12/vocab.txt',
type=str,
required=True,
help="The vocabulary file that the BERT model was trained on.")
parser.add_argument("--bert_config_file",
default='uncased_L-12_H-768_A-12/bert_config.json',
type=str,
required=True,
help="The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.")
parser.add_argument("--init_checkpoint",
default='uncased_L-12_H-768_A-12/pytorch_model.bin',
type=str,
required=True,
help="Initial checkpoint (usually from a pre-trained BERT model).")
parser.add_argument("--tokenize_method",
default='word_split',
type=str,
required=True,
choices=["prefix_match", "unk_replace", "word_split"],
help="how to solve the unknow words, max prefix match or replace with [UNK] or split to some words")
parser.add_argument("--subtask",
default='AS',
type=str,
required=True,
choices=["AS", "T"],
help="just one subtask")
parser.add_argument("--use_crf",
default=False,
action='store_true',
help="Whether to use CRF after Bert sequence_output")
## Other parameters
parser.add_argument("--eval_test",
default=True,
action='store_true',
help="Whether to run eval on the test set.")
parser.add_argument("--do_lower_case",
default=True,
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--train_batch_size",
default=18,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=2e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=30.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--accumulate_gradients",
type=int,
default=1,
help="Number of steps to accumulate gradient on (divide the batch_size and accumulate)")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
args = parser.parse_args()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
if args.accumulate_gradients < 1:
raise ValueError("Invalid accumulate_gradients parameter: {}, should be >= 1".format(
args.accumulate_gradients))
args.train_batch_size = int(args.train_batch_size / args.accumulate_gradients)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
bert_config = BertConfig.from_json_file(args.bert_config_file)
if args.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
args.max_seq_length, bert_config.max_position_embeddings))
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
os.makedirs(args.output_dir, exist_ok=True)
# prepare dataloaders
processors = {
"semeval":Semeval_Processor,
}
processor = Semeval_Processor()
label_list = processor.get_labels()
ner_label_list = processor.get_ner_labels(args.data_dir) # BIO or TO tags for ner entity
tokenizer = tokenization.FullTokenizer(
vocab_file=args.vocab_file, tokenize_method=args.tokenize_method, do_lower_case=args.do_lower_case)
# training set
train_examples = None
num_train_steps = None
train_examples = processor.get_train_examples(args.data_dir)
num_train_steps = int(
len(train_examples) / args.train_batch_size * args.num_train_epochs)
train_features, _ = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer, ner_label_list, args.tokenize_method)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
all_ner_label_ids = torch.tensor([f.ner_label_ids for f in train_features], dtype=torch.long)
all_ner_mask = torch.tensor([f.ner_mask for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_ner_label_ids, all_ner_mask)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
# test set
if args.eval_test:
test_examples = processor.get_test_examples(args.data_dir)
test_features, test_tokens = convert_examples_to_features(
test_examples, label_list, args.max_seq_length, tokenizer, ner_label_list, args.tokenize_method)
all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in test_features], dtype=torch.long)
all_ner_label_ids = torch.tensor([f.ner_label_ids for f in test_features], dtype=torch.long)
all_ner_mask = torch.tensor([f.ner_mask for f in test_features], dtype=torch.long)
test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_ner_label_ids, all_ner_mask)
test_dataloader = DataLoader(test_data, batch_size=args.eval_batch_size, shuffle=False)
# model and optimizer
if args.use_crf:
if args.subtask == 'AS':
model = BertForTABSAJoint_CRF_AS(bert_config, len(label_list), len(ner_label_list))
else:
model = BertForTABSAJoint_CRF_T(bert_config, len(label_list), len(ner_label_list))
else:
if args.subtask == 'AS':
model = BertForTABSAJoint_AS(bert_config, len(label_list), len(ner_label_list), args.max_seq_length)
else:
model = BertForTABSAJoint_T(bert_config, len(label_list), len(ner_label_list), args.max_seq_length)
if args.init_checkpoint is not None:
model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
no_decay = ['bias', 'gamma', 'beta']
optimizer_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
optimizer = BERTAdam(optimizer_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_steps)
# train
output_log_file = os.path.join(args.output_dir, "log.txt")
print("output_log_file=",output_log_file)
with open(output_log_file, "w") as writer:
if args.eval_test:
writer.write("epoch\tglobal_step\tloss\ttest_loss\ttest_accuracy\n")
else:
writer.write("epoch\tglobal_step\tloss\n")
global_step = 0
epoch=0
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
epoch+=1
model.train()
tr_loss = 0
tr_ner_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids, ner_label_ids, ner_mask = batch
# loss, ner_loss, _, _ = model(input_ids, segment_ids, input_mask, label_ids, ner_label_ids, ner_mask)
loss, _ = model(input_ids, segment_ids, input_mask, label_ids, ner_label_ids, ner_mask)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step() # We have accumulated enought gradients
model.zero_grad()
global_step += 1
# eval_test
if args.eval_test:
model.eval()
test_loss, test_accuracy = 0, 0
nb_test_steps, nb_test_examples = 0, 0
with open(os.path.join(args.output_dir, "test_ep_"+str(epoch)+".txt"),"w") as f_test:
if args.subtask == 'AS':
f_test.write('yes_not\tyes_not_pre\n')
else:
f_test.write('sentence\ttrue_ner\tpredict_ner\n')
batch_index = 0
for input_ids, input_mask, segment_ids, label_ids, ner_label_ids, ner_mask in test_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
ner_label_ids = ner_label_ids.to(device)
ner_mask = ner_mask.to(device)
# test_tokens is the origin word in sentences [batch_size, sequence_length]
ner_test_tokens = test_tokens[batch_index*args.eval_batch_size:(batch_index+1)*args.eval_batch_size]
batch_index += 1
with torch.no_grad():
# tmp_test_loss, tmp_ner_test_loss, logits, ner_predict = model(input_ids, segment_ids, input_mask, label_ids, ner_label_ids, ner_mask)
tmp_test_loss, logits = model(input_ids, segment_ids, input_mask, label_ids, ner_label_ids, ner_mask)
if args.subtask == 'AS':
# category & polarity
logits = F.softmax(logits, dim=-1)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
outputs = np.argmax(logits, axis=1)
for output_i in range(len(outputs)):
# category & polarity
f_test.write(str(label_ids[output_i]))
f_test.write('\t')
f_test.write(str(outputs[output_i]))
f_test.write('\t')
f_test.write("\n")
tmp_test_accuracy=np.sum(outputs == label_ids)
test_accuracy += tmp_test_accuracy
else:
if args.use_crf:
# CRF
ner_logits = logits
else:
# softmax
ner_logits = torch.argmax(F.log_softmax(logits, dim=2),dim=2)
ner_logits = ner_logits.detach().cpu().numpy()
ner_label_ids = ner_label_ids.to('cpu').numpy()
ner_mask = ner_mask.to('cpu').numpy()
for output_i in range(len(ner_test_tokens)):
# sentence & ner labels
sentence_clean = []
label_true = []
label_pre = []
sentence_len = len(ner_test_tokens[output_i])
for i in range(sentence_len):
if not ner_test_tokens[output_i][i].startswith('##'):
sentence_clean.append(ner_test_tokens[output_i][i])
label_true.append(ner_label_list[ner_label_ids[output_i][i]])
label_pre.append(ner_label_list[ner_logits[output_i][i]])
f_test.write(' '.join(sentence_clean))
f_test.write('\t')
f_test.write(' '.join(label_true))
f_test.write("\t")
f_test.write(' '.join(label_pre))
f_test.write("\n")
test_loss += tmp_test_loss.mean().item()
nb_test_examples += input_ids.size(0)
nb_test_steps += 1
test_loss = test_loss / nb_test_steps
#test_accuracy = test_accuracy / nb_test_examples
result = collections.OrderedDict()
if args.eval_test:
result = {'epoch': epoch,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps,
'test_loss': test_loss}
else:
result = {'epoch': epoch,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps}
logger.info("***** Eval results *****")
with open(output_log_file, "a+") as writer:
for key in result.keys():
logger.info(" %s = %s\n", key, str(result[key]))
writer.write("%s\t" % (str(result[key])))
writer.write("\n")
if __name__ == "__main__":
main()