-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_lib.py
476 lines (372 loc) · 16.1 KB
/
model_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import numpy as np
from scipy.stats import norm
from itertools import combinations
import simulated_model_gen as mod_gen
import pickle
import time
import matplotlib.pyplot as plt
# from pudb import set_trace
class Neuron:
def __init__(self, graph, observed, true_params, lambs_ids_groups, parents):
self.graph = graph
self.observed = observed
self.true_params = true_params
self.lambs_ids = self.assign_lambdas(lambs_ids_groups)
self.calcium, self.data = self.gen_toy_data(parents)
self.messages = {}
self.root = 0
self.params = {'a': 1., 'b': 0., 'var_y': .4, 'lambs': [.4, .4]}
self.estimates = [None] * len(self.calcium)
def assign_lambdas(self, groups):
lambs_ids = {}
for gi, g in enumerate(groups):
for node in g:
for neighbor in self.graph[node]:
if neighbor in g:
lambs_ids[(node, neighbor)] = gi
return lambs_ids
def gen_toy_data(self, parents):
calcium = [None] * len(self.graph)
INIT_VAL = 10
calcium[0] = INIT_VAL
for child in parents.keys():
calcium[child] = calcium[parents[child]] + np.random.randn() \
* np.sqrt(self.true_params['lambs'][
self.lambs_ids[(child, parents[child])]])
data = [None] * len(self.graph)
for oi, obs in enumerate(self.observed):
if not obs:
data[oi] = np.nan
else:
data[oi] = (self.true_params['a'] * calcium[oi] +
self.true_params['b']) + np.random.randn() \
* np.sqrt(self.true_params['var_y'])
return calcium, data
def send_message(self, source, destination):
# getting the variance of the message
var_m = 0
mu_m = 0
for k in self.graph[source]:
if k == destination:
pass
else:
messages_to_source = self.messages[(k, source)]
# update var and mean of message
var_m += 1. / messages_to_source[1]
mu_m += messages_to_source[0] / messages_to_source[1]
if(self.observed[source]):
# only if source is observed do we add the var_y
var_m += self.params['a']**2 / self.params['var_y']
# data will only have source if it's observed
mu_m += (self.data[source] - self.params['b']) * self.params['a'] \
/ (self.params['var_y'])
var_m = 1. / var_m
mu_m = mu_m * var_m
var_update = var_m + self.params['lambs'][
self.lambs_ids[(source, destination)]]
# setting the tuple
self.messages[(source, destination)] = (mu_m, var_update)
def collect(self, i, j):
for k in self.graph[j]:
if k == i:
pass
else:
self.collect(j, k)
self.send_message(j, i)
def distribute(self, i, j):
self.send_message(i, j)
for k in self.graph[j]:
if k == i:
pass
else:
self.distribute(j, k)
def message_passing(self):
for k in self.graph[self.root]:
self.collect(self.root, k)
for k in self.graph[self.root]:
self.distribute(self.root, k)
def get_marginal(self, node):
var_m = 0
mu_m = 0
for k in self.graph[node]:
messages_to_node = self.messages[(k, node)]
# update var and mean of message
var_m += 1. / messages_to_node[1]
mu_m += messages_to_node[0] / messages_to_node[1]
# only if source is observed do we add the var_y
if(self.observed[node]):
var_m += self.params['a']**2 / self.params['var_y']
mu_m += (self.data[node] - self.params['b']) * self.params['a'] \
/ (self.params['var_y'])
var_m = 1. / var_m
mu_m = mu_m * var_m
return (mu_m, var_m)
# return mu_m
def get_messages_excluding(self, node, exclude_node):
var_m = 0
mu_m = 0
for k in self.graph[node]:
if k != exclude_node:
messages_to_node = self.messages[(k, node)]
# update var and mean of message
var_m += 1. / messages_to_node[1]
mu_m += messages_to_node[0] / messages_to_node[1]
# only if source is observed do we add the var_y
if(self.observed[node]):
var_m += self.params['a']**2 / self.params['var_y']
mu_m += (self.data[node] - self.params['b']) * self.params['a'] \
/ (self.params['var_y'])
var_m = 1. / var_m
return var_m
def EM(self):
lastLL = None
newLL = None
# set_trace()
sse_trials = []
ll_trials = []
counter = 0
best_sse_iteration = 0
best_sse_value = np.inf
start = time.time()
tracker = {'a':[], 'lamb1':[], 'lamb2':[],'b':[], 'var_y':[]}
while ((lastLL is None) or (abs(newLL - lastLL) > 1.0 * 10**(-5))):
# run E step and M step while we have not converged
self.E_step()
self.M_step()
lastLL = newLL
newLL = self.Log_Likelihood()
sse = np.sum([(c - e[0])**2 for c, e in zip(self.calcium, self.estimates)])
msse = sse/len(self.calcium)
#add history of the parameters
a = self.params['a']
b = self.params['b']
lamb1 = self.params['lambs'][0]
lamb2 = self.params['lambs'][1]
var_y = self.params['var_y']
tracker['a'].append(a)
tracker['b'].append(b)
tracker['lamb1'].append(lamb1)
tracker['lamb2'].append(lamb2)
tracker['var_y'].append(var_y)
sse_trials.append(msse)
ll_trials.append(newLL)
if sse < best_sse_value:
best_sse_value = msse
best_sse_iteration = counter
if counter % 100 == 0:
print "params: %s" % str(self.params)
print "log likelihood: %f" % newLL
print "SSE: " + str(sse)
counter += 1
end = time.time()
print "\nTime to converge: %s sec\n" % str(end - start)
print "Amount of iterations to converge: %d\n" % counter
print "Best SSE value: %f at iteration %d" % (best_sse_value,best_sse_iteration)
return ll_trials, sse_trials, best_sse_value, tracker
def E_step(self):
self.message_passing()
self.estimates = [(self.get_marginal(i)) for
i in xrange(len(self.graph))]
def M_step(self):
# Update all parameter estimates
# Update gain a and offset b by regression LSE
C_mean = np.mean([e[0] for ie, e in enumerate(self.estimates) if
not np.isnan(self.data[ie])])
Y_mean = np.nanmean(self.data)
# Exclude any nodes that were not observed
cov = np.sum([(C_mean - c[0]) * (Y_mean - y) for c, y in
zip(self.estimates, self.data) if not np.isnan(y)])
var_est = np.sum([(C_mean - c[0])**2 + c[1] for c, y in
zip(self.estimates, self.data) if not np.isnan(y)])
# If we want to regularize a, use the expression below
self.params['a'] = \
(self.true_params['a_mean'] / self.true_params['a_var'] +
cov / self.params['var_y']) / \
(1 / self.true_params['a_var'] + var_est / self.params['var_y'])
self.params['b'] = Y_mean - self.params['a'] * C_mean
# Update the observation variance
self.params['var_y'] = np.sum([y**2 - 2 * y * (self.params['a'] *
c[0] + self.params['b']) +
self.params['a']**2 * (c[1] + c[0]**2) +
self.params['b'] ** 2 + 2 *
self.params['a'] * self.params['b'] *
c[0] for c, y in zip(self.estimates,
self.data) if not np.isnan(y)])
self.params['var_y'] /= np.sum(self.observed)
# Update all of our smoothing parameters
l_updates = [0] * len(self.params['lambs'])
for (node_i, node_j) in combinations(xrange(len(self.graph)), 2):
try:
l_id = self.lambs_ids[(node_i, node_j)]
# l_updates[l_id] += (self.estimates[node_i] -
# self.estimates[node_j])**2
Ji = self.get_messages_excluding(node_i, node_j) / \
(self.get_messages_excluding(node_i, node_j) +
self.params['lambs'][l_id])
E_prod = self.estimates[node_j][1] * Ji + \
self.estimates[node_i][0] * self.estimates[node_j][0]
l_updates[l_id] += self.estimates[node_i][1] + \
self.estimates[node_i][0]**2 -\
2 * E_prod + self.estimates[node_j][1] + \
self.estimates[node_j][0]**2
except KeyError:
# Unconnected node pairs will not have a lambda id,
# just skip over these nodes
pass
# Normalize by number of pairs with that lambda_id
# Note that count double-counts, so multiply by 2
l_updates = [2 * l / self.lambs_ids.values().count(li) for
li, l in enumerate(l_updates)]
self.params['lambs'] = l_updates
def Log_Likelihood(self):
ll = 0
# Add prob of Ys P(Yi|Ci)
for i in xrange(len(self.data)):
if self.observed[i]:
ll += norm.logpdf(self.data[i], loc=self.params['a'] *
self.estimates[i][0] + self.params['b'],
scale=np.sqrt(self.params['var_y']))
# Add prob of Cs P(Ci, Cj)
for (i, j) in combinations(xrange(len(self.graph)), 2):
try:
l_id = self.lambs_ids[(i, j)]
ll += norm.logpdf(self.estimates[i][0] - self.estimates[j][0], loc=0,
scale=np.sqrt(self.params['lambs'][l_id]))
except KeyError:
pass
return ll
def run_tests(big_graph = False):
if not big_graph:
a_size=50
b_size=20
else:
a_size=100
b_size=50
graph, parents, lamb_group_ids = mod_gen.make_graph(apical_size=a_size, basal_size=b_size)
observed = [True] * len(graph)
true_params = {'a': 1, 'b': 0, 'var_y': .1, 'lambs': [.1, .2], 'a_var': .1, 'a_mean': 1}
neuron = Neuron(graph, observed, true_params, lamb_group_ids, parents)
ll_trials, sse_trials, best_sse_value, tracker = neuron.EM()
if not big_graph:
prefix = 'trials_msse-%f_' % best_sse_value
else:
prefix = 'trials_big_graph_msse-%f_' % best_sse_value
plt.scatter(range(np.shape(ll_trials)[0]),ll_trials)
plt.title('Complete log likelihood during EM')
plt.ylabel('Complete log likelihood')
plt.xlabel('Iteration of algorithm')
# plt.show()
plt.savefig('%s_ll_fig.pdf' % prefix)
plt.clf()
plt.plot(range(np.shape(sse_trials)[0]),sse_trials)
plt.title('Mean squared error rates during EM')
plt.ylabel('Mean SSE')
plt.xlabel('Iteration of algorithm')
# plt.show()
plt.savefig('%s_sse_fig.pdf' % prefix)
f = open('%s.p' % prefix,'wb')
history = [ll_trials, sse_trials]
plt.clf()
iters = len(tracker['a'])
fig = plt.figure()
ax_a = fig.add_subplot(111)
ax_a.plot([a for a in tracker['a']],color='b',label=r'$a$')
ax_a_true = fig.add_subplot(111)
ax_a_true.plot([true_params['a']] * iters,'--',color='b', markevery=5, label=r'True $a$')
plt.legend()
ax = fig.add_subplot(111)
ax.plot([a for a in tracker['b']],color='g',label=r'$b$')
ax = fig.add_subplot(111)
ax.plot([true_params['b']] * iters,'--',color='g',markevery=5,label=r'True $b$ $(0)$')
ax = fig.add_subplot(111)
ax = fig.add_subplot(111)
ax.plot([a for a in tracker['lamb1']],color='r',label=r'$\sigma_{c1}$')
ax = fig.add_subplot(111)
ax.plot([true_params['lambs'][0]] * iters,'--',color='r',markevery=5,label=r'True $\sigma_{c1}$')
ax = fig.add_subplot(111)
ax = fig.add_subplot(111)
ax.plot([a for a in tracker['lamb2']],color='c',label=r'$\sigma_{c2}$')
ax = fig.add_subplot(111)
ax.plot([true_params['lambs'][1]] * iters,'--',color='c',markevery=5,label=r'True $\sigma_{c2}$')
ax = fig.add_subplot(111)
ax = fig.add_subplot(111)
ax.plot([a for a in tracker['var_y']],color='m',label=r'$\sigma_Y$')
ax = fig.add_subplot(111)
ax.plot([true_params['var_y']] * iters,'--',color='m',markevery=5,label=r'True $\sigma_Y$')
ax = fig.add_subplot(111)
plt.legend(fontsize=10)
ax.set_title("Model parameters during EM")
ax.set_ylabel('Value of parameter')
ax.set_xlabel('Iteration of algorithm')
fig.savefig('%s_params_fig.pdf' % prefix)
print "see file with \'%s\' prefix" % prefix
pickle.dump(history,f)
f.close()
def run_tests_gpu(big_graph = False):
if not big_graph:
a_size=50
b_size=20
else:
a_size=300
b_size=200
graph, parents, lamb_group_ids = mod_gen.make_graph(apical_size=a_size,
basal_size=b_size)
observed = [True] * len(graph)
true_params = {'a': 1, 'b': 0, 'var_y': .1, 'lambs': [.1, .2], 'a_var': .1, 'a_mean': 1}
neuron = Neuron(graph, observed, true_params, lamb_group_ids, parents)
ll_trials, sse_trials, best_sse_value = neuron.EM()
if not big_graph:
prefix = 'trials_msse-%f_' % best_sse_value
else:
prefix = 'trials_big_graph_msse-%f_' % best_sse_value
f = open('%s.p' % prefix,'wb')
history = [ll_trials, sse_trials]
print "see file with \'%s\' prefix" % prefix
pickle.dump(history,f)
f.close()
def make_plots(pick):
with open(pick,'rb') as handle:
history = pickle.load(handle)
ll_trials = history[0]
sse_trials = history[1]
plt.scatter(range(np.shape(ll_trials)[0]),ll_trials)
plt.title('Complete Log likelihood during EM iterations')
plt.ylabel('Complete log likelihood')
plt.xlabel('Iteration')
# plt.show()
plt.savefig('ll_fig_from_pickle_%s.pdf' % pick[:-2])
plt.clf()
plt.plot(range(np.shape(sse_trials)[0]),sse_trials)
plt.title('Error rates during during EM iterations')
plt.ylabel('Mean SSE')
plt.xlabel('Iteration')
# plt.show()
plt.savefig('sse_fig_from_pickle_%s.pdf' % pick[:-2])
if __name__ == '__main__':
pass
# graph = {0: [1], 1: [0, 2], 2: [1, 3, 4], 3: [2], 4: [2, 5], 5: [4]}
# observed = [True, False, True, True, True, True]
# true_params = {'a': 1, 'b': 0, 'var_y': .01, 'lambs': [1, 1]}
# lambs_ids_groups = [[0, 1, 2], [2, 3, 4, 5]]
# parents = {1: 0, 2: 1, 3: 2, 4: 2, 5: 4}
# neuron = Neuron(graph, observed, true_params, lambs_ids_groups, parents)
# neuron.EM()
# print("\n\n\n\n\n\n")
# graph = {0:[1], 1:[0,2], 2:[1,3], 3:[2,4,7,9], 4:[3,5], 5:[4,6], 6:[5], 7:[3,8], 8:[7], 9:[3,10], 10:[9,11], 11:[10]}
# observed = [True, True, False, True, False, True, True, False, True, True, False, True]
# true_params = {'a':1, 'b':0, 'var_y':.01, 'lambs': [.1, .2]}
# lambs_ids_groups = [[0, 1, 2, 3], [3, 4, 5, 6, 7, 8, 9, 10, 11]]
# parents = {1:0, 2:1, 3:2, 4:3, 5:4, 6:5, 7:3, 8:7, 9:3, 10:9, 11:10}
# neuron = Neuron(graph, observed, true_params, lambs_ids_groups, parents)
# neuron.EM()
# graph, parents, lamb_group_ids = mod_gen.make_graph()
# observed = [True] * len(graph)
# true_params = {'a': 1, 'b': 0, 'var_y': .1, 'lambs': [.1, .2], 'a_var': .1, 'a_mean': 1}
# neuron = Neuron(graph, observed, true_params, lamb_group_ids, parents)
# neuron.EM()
# run_tests()
# run_tests(big_graph=True)
# run_tests_gpu(big_graph=True)
# make_plots('trials_best_mse-0.050438.p')
# set_trace()
# Infer Missing values