forked from NVIDIA/VideoProcessingFramework
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SamplePyTorch.py
129 lines (108 loc) · 4.61 KB
/
SamplePyTorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#
# Copyright 2021 Kognia Sports Intelligence
# Copyright 2021 NVIDIA Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Starting from Python 3.8 DLL search policy has changed.
# We need to add path to CUDA DLLs explicitly.
import sys
import os
if os.name == 'nt':
# Add CUDA_PATH env variable
cuda_path = os.environ["CUDA_PATH"]
if cuda_path:
os.add_dll_directory(cuda_path)
else:
print("CUDA_PATH environment variable is not set.", file = sys.stderr)
print("Can't set CUDA DLLs search path.", file = sys.stderr)
exit(1)
# Add PATH as well for minor CUDA releases
sys_path = os.environ["PATH"]
if sys_path:
paths = sys_path.split(';')
for path in paths:
if os.path.isdir(path):
os.add_dll_directory(path)
else:
print("PATH environment variable is not set.", file = sys.stderr)
exit(1)
import torch
import PyNvCodec as nvc
import PytorchNvCodec as pnvc
import numpy as np
def main(gpuID, encFilePath, dstFilePath):
dstFile = open(dstFilePath, "wb")
nvDec = nvc.PyNvDecoder(encFilePath, gpuID)
w = nvDec.Width()
h = nvDec.Height()
res = str(w) + 'x' + str(h)
nvEnc = nvc.PyNvEncoder({'preset': 'hq', 'codec': 'h264', 's': res, 'bitrate' : '10M'}, gpuID)
# Surface converters
to_rgb = nvc.PySurfaceConverter(w, h, nvc.PixelFormat.NV12, nvc.PixelFormat.RGB, gpuID)
to_yuv = nvc.PySurfaceConverter(w, h, nvc.PixelFormat.RGB, nvc.PixelFormat.YUV420, gpuID)
to_nv12 = nvc.PySurfaceConverter(w, h, nvc.PixelFormat.YUV420, nvc.PixelFormat.NV12, gpuID)
# Colorspace conversion contexts.
# Here we use them just for illustration purposes.
cc1 = nvc.ColorspaceConversionContext(nvc.ColorSpace.BT_709,
nvc.ColorRange.JPEG)
cc2 = nvc.ColorspaceConversionContext(nvc.ColorSpace.BT_601,
nvc.ColorRange.MPEG)
# RGB Surface to import PyTorch tensor to
surface_rgb = nvc.Surface.Make(nvc.PixelFormat.RGB, w, h, gpuID)
# Encoded video frame
encFrame = np.ndarray(shape=(0), dtype=np.uint8)
# PyTorch tensor the VPF Surfaces will be exported to
surface_tensor = torch.zeros(h, w, 3, dtype=torch.uint8,
device=torch.device(f'cuda:{gpuID}'))
while True:
rawSurface = nvDec.DecodeSingleSurface()
if rawSurface.Empty():
break
# Export VPF RGB Surface to PyTorch tensor.
# Please note that pitch is equal to width * 3.
# SurfacePlane is raw CUDA 2D memory allocation chunk so for
# interleaved RGB frame it's width is 3x picture width.
rgb24 = to_rgb.Execute(rawSurface, cc1)
rgb24.PlanePtr().Export(surface_tensor.data_ptr(), w * 3, gpuID)
# PROCESS YOUR TENSOR HERE.
# THIS DUMMY PROCESSING WILL JUST MAKE VIDEO FRAMES DARKER.
dark_frame = torch.floor_divide(surface_tensor, 2)
# Import to VPF Surface. Same thing about pitch as before.
surface_rgb.PlanePtr().Import(dark_frame.data_ptr(), w * 3, gpuID)
# Convert to NV12
surface_yuv = to_yuv.Execute(surface_rgb, cc2)
surface_nv12 = to_nv12.Execute(surface_yuv, cc2)
# Encode
success = nvEnc.EncodeSingleSurface(surface_nv12, encFrame)
if success:
encByteArray = bytearray(encFrame)
dstFile.write(encByteArray)
# Encoder is asynchronous, so we need to flush it
while True:
success = nvEnc.FlushSinglePacket(encFrame)
if(success):
encByteArray = bytearray(encFrame)
dstFile.write(encByteArray)
else:
break
if __name__ == "__main__":
print("This sample transcode and process with pytorch an input video on given GPU.")
print("Usage: SamplePyTorch.py $gpu_id $input_file $output_file.")
if(len(sys.argv) < 4):
print("Provide gpu ID, path to input and output files")
exit(1)
gpuID = int(sys.argv[1])
encFilePath = sys.argv[2]
decFilePath = sys.argv[3]
main(gpuID, encFilePath, decFilePath)