forked from trizen/perl-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bernoulli_numbers_from_primes_ntheory.pl
executable file
·91 lines (66 loc) · 3.13 KB
/
bernoulli_numbers_from_primes_ntheory.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# License: GPLv3
# Date: 13 May 2017
# https://github.com/trizen
# Computation of the nth-Bernoulli number, using prime numbers.
# Algorithm due to Kevin J. McGown (December 8, 2005)
# See his paper: "Computing Bernoulli Numbers Quickly"
use 5.010;
use strict;
use warnings;
use Math::GMPz;
use Math::GMPq;
use Math::MPFR;
use ntheory qw(is_prob_prime forprimes fordivisors);
sub bern_from_primes {
my ($n) = @_;
$n == 0 and return Math::GMPq->new('1');
$n == 1 and return Math::GMPq->new('1/2');
$n < 0 and return undef;
$n % 2 and return Math::GMPq->new('0');
my $round = Math::MPFR::MPFR_RNDN();
my $tau = 6.28318530717958647692528676655900576839433879875;
my $log2B = (log(4 * $tau * $n) / 2 + $n * log($n) - $n * log($tau) - $n) / log(2);
my $prec = int($n + $log2B) + ($n <= 90 ? 18 : 0);
my $d = Math::GMPz::Rmpz_init();
Math::GMPz::Rmpz_fac_ui($d, $n); # d = n!
my $K = Math::MPFR::Rmpfr_init2($prec);
Math::MPFR::Rmpfr_const_pi($K, $round); # K = pi
Math::MPFR::Rmpfr_pow_ui($K, $K, $n, $round); # K = K^n
Math::MPFR::Rmpfr_mul_2ui($K, $K, $n - 1, $round); # K = K * 2^(n-1)
Math::MPFR::Rmpfr_div_z($K, $K, $d, $round); # K = K / d
Math::MPFR::Rmpfr_ui_div($K, 1, $K, $round); # K = 1 / K
Math::GMPz::Rmpz_set_ui($d, 1); # d = 1
fordivisors { # divisors of n
if (is_prob_prime($_ + 1)) {
Math::GMPz::Rmpz_mul_ui($d, $d, $_ + 1); # d = d * p, where (p-1)|n
}
} $n;
my $N = Math::MPFR::Rmpfr_init2(64);
Math::MPFR::Rmpfr_mul_z($N, $K, $d, $round); # N = K * d
Math::MPFR::Rmpfr_rootn_ui($N, $N, $n - 1, $round); # N = K^(1/(n-1))
Math::MPFR::Rmpfr_ceil($N, $N); # N = ceil(N)
$N = Math::MPFR::Rmpfr_get_ui($N, $round);
my $z = Math::MPFR::Rmpfr_init2($prec); # zeta(n)
my $u = Math::GMPz::Rmpz_init(); # p^n
Math::MPFR::Rmpfr_set_ui($z, 1, $round); # z = 1
forprimes { # primes <= N
Math::GMPz::Rmpz_ui_pow_ui($u, $_, $n); # u = p^n
Math::MPFR::Rmpfr_mul_z($z, $z, $u, $round); # z = z*u
Math::GMPz::Rmpz_sub_ui($u, $u, 1); # u = u-1
Math::MPFR::Rmpfr_div_z($z, $z, $u, $round); # z = z/u
} $N;
Math::MPFR::Rmpfr_mul($z, $z, $K, $round); # z = z * K
Math::MPFR::Rmpfr_mul_z($z, $z, $d, $round); # z = z * d
Math::MPFR::Rmpfr_ceil($z, $z); # z = ceil(z)
my $q = Math::GMPq::Rmpq_init();
Math::GMPq::Rmpq_set_den($q, $d); # denominator
Math::MPFR::Rmpfr_get_z($d, $z, $round);
Math::GMPz::Rmpz_neg($d, $d) if $n % 4 == 0; # d = -d, iff 4|n
Math::GMPq::Rmpq_set_num($q, $d); # numerator
return $q; # Bn
}
foreach my $i (0 .. 50) {
printf "B%-3d = %s\n", 2 * $i, bern_from_primes(2 * $i);
}