-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathBatchJob.py
142 lines (114 loc) · 5.36 KB
/
BatchJob.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import pandas as pd
from tqdm import tqdm
import multiprocessing as mp
import time
import json
# My implementation of a Hidden Markov Model
from HiddenMarkovModel import HiddenMarkovModel
#names = [ "r4.1/r41_features_simple.h5", "r4.1/r41_features_complex.h5", "r4.2/r42_features_simple.h5", "r4.2/r42_features_complex.h5" ]
names = [ "r42_features_complex.h5", "r42_features_complex.h5", "r42_features_complex.h5", "r42_features_complex.h5" ]
saves = [ "userScores_complex_r42_50_inertia_10.json","userScores_complex_r42_50_inertia_20.json","userScores_complex_r42_50_inertia_50.json","userScores_complex_r42_50_inertia_100.json" ]
states = [ 10,20,50,100 ]
inertias = [0.05]
#saves = [ "userScores_simple_r41_80_inertia.json", "userScores_complex_r41_80_inertia.json", "userScores_simple_r42_80_inertia.json", "userScores_complex_r42_80_inertia.json"]
filename = "/home/tabz/Documents/CMU_Dataset/r4.2/" + "r42_features_simple.h5" #+ name
# filename = "C:/Users/tabzr/Documents/CMU Dataset/r4.2/" + "r42_features_complex.h5" #+ name
print("Loading:", filename,flush=True)
joint = pd.read_hdf(filename, "table")
users = np.unique(joint.index.values)
print("There are", users.size, "users", flush=True)
num_features = np.unique(joint["feature"].values).size
print("Using", num_features, "features", flush=True)
assert(len(names) == len(saves))
for inert in inertias:
userMatrices = {}
# filename = "/home/tabz/Documents/CMU_Dataset/r4.2/" + "r42_features_complex.h5" #+ name
# # filename = "C:/Users/tabzr/Documents/CMU Dataset/r4.2/" + "r42_features_complex.h5" #+ name
# print("Loading:", filename,flush=True)
# joint = pd.read_hdf(filename, "table")
# users = np.unique(joint.index.values)
# print("There are", users.size, "users", flush=True)
# num_features = np.unique(joint["feature"].values).size
# print("Using", num_features, "features", flush=True)
# The initial configurations for the hidden markov model
num_states = 10
num_symbols = num_features
deviation_from_uniform = 1/2
# Seed the rng for reproducibility
rng_seed = 42
np.random.seed(rng_seed)
def init_matrices():
# Start probabilities
startprobs = np.zeros(num_states)
startprobs[0] = 1
startprobs.fill(1/num_states)
startprobs += np.random.rand(num_states) * deviation_from_uniform
startprobs /= np.sum(startprobs)
# Transition probabilities
transprobs = np.empty((num_states,num_states))
transprobs.fill(1/num_states)
transprobs += np.random.rand(num_states,num_states) * deviation_from_uniform
transprobs /= transprobs.sum(axis=1)[:,np.newaxis]
# Emission probabilities
emissionprobs = np.empty((num_states,num_symbols))
emissionprobs.fill(1/num_symbols)
emissionprobs += np.random.rand(num_states,num_symbols) * deviation_from_uniform
emissionprobs /= emissionprobs.sum(axis=1)[:,np.newaxis]
return startprobs, transprobs, emissionprobs
def compute_probs(user_df):
dayGrouping = pd.Grouper(key="date", freq="1D")
weekGrouping = pd.Grouper(key="date", freq="1W")
timeGrouping = user_df.groupby(weekGrouping)
# print("Starting on user: ", user)
s,t,e = init_matrices()
model = HiddenMarkovModel.HMM(num_states, t,e,s)
trainingPeriod = 4
timesTrained = 0
logProbScores = []
matrices = []
def mm(x,y,z):
return (np.copy(x), np.copy(y), np.copy(z))
matrices.append(mm(t,e,s))
for name, group in timeGrouping:
#The sequence for the time grouping we are considering
seq = group["feature"].values
if len(seq) < 1:
# If there is no activity for this week
logProbScores.append(0)
continue
if timesTrained > trainingPeriod:
logProb = model.sequence_log_probability(seq)
logProbScores.append(-logProb)
#Train the model on the sequence we have just seen
model.learn(seq, max_iters=20, threshold=0.01, restart_threshold=0.1,max_restarts=5, inertia=inert)
matrices.append(mm(model.transitions, model.emissions, model.starts))
timesTrained+=1
return (logProbScores, matrices)
userScores = {}
def setInDict(u):
def z(scoresAndMatrices):
r = scoresAndMatrices[0]
m = scoresAndMatrices[1]
userScores[u] = r
userMatrices[u] = m
return z
pool = mp.Pool(processes=8)
print("Queueing up jobs", flush=True)
for user in tqdm(users):
pool.apply_async(compute_probs, args=(joint.loc[ joint.index == user ],), callback=setInDict(user))
# compute_probs(joint.loc[user])
print("Progress on those jobs:", flush=True)
done = 0
for i in tqdm(users):
while done >= len(userScores):
time.sleep(1)
done += 1
pool.close()
pool.join()
pool.terminate()
save = "userScores_simple_r42_" + str(inert) + "_inertia_v2.json"
print("Saving:", save, flush=True)
json.dump(userScores, open(save, "w"))
print("Saving matrices", flush=True)
np.save("r4.2_simple_matrices", userMatrices)