-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchatgpt.py
87 lines (73 loc) · 3.95 KB
/
chatgpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# OpenAI ChatGPT를 langchain 라이브러리를 이용하여 번역
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
# framework
from translate import Translate
from eval import Evaluate
# chatgpt 번역
class ChatGPT(Translate):
def __init__(self, model_name='gpt-3.5-turbo'):
# ChatOpenAI 객체를 생성합니다.
chat = ChatOpenAI(model_name=model_name)
# 사용자에게 보낼 시스템 메시지와 인간의 응답 메시지 템플릿을 정의합니다.
template = "You are a helpful assistant that translates English to {target_lang}. Please paraphrase as much as possible when translating. Do not add expressions that are not in the source sentences. Do not add pronunciations for the target language."
system_message_prompt = SystemMessagePromptTemplate.from_template(
template)
human_template = """Please provide the {target_lang} translation for these sentences: {original_text}"""
human_message_prompt = HumanMessagePromptTemplate.from_template(
human_template)
chat_prompt = ChatPromptTemplate.from_messages(
[system_message_prompt, human_message_prompt])
# LLMChain 객체를 생성
self.translate_chain = LLMChain(llm=chat, prompt=chat_prompt)
async def __call__(self, original_text: str, target_lang: str = 'Korean') -> str:
"""
입력된 original_text를 ChatGPT-3.5 모델을 이용하여 target_lang으로 번역하는 함수입니다.
Args:
original_text (str): 번역할 영어 텍스트
target_lang (str): 목표 언어 (default: 'Korean')
Returns:
str: 입력된 original_text가 target_lang으로 번역된 결과
"""
# original_text가 빈 문자열인 경우 바로 반환합니다.
if not original_text or original_text.strip() == "":
return original_text
# translate_chain 객체의 arun 비동기 메소드를 사용하여 번역을 진행한 후, 반환합니다.
return await self.translate_chain.arun({'text': '', 'original_text': original_text, 'target_lang': target_lang})
# chatgpt inference
class ChatGPTEval(Evaluate):
def __init__(self, model_name='gpt-3.5-turbo'):
chat = ChatOpenAI(model_name=model_name, request_timeout=600)
system_messsage_prompt = SystemMessagePromptTemplate.from_template("당신은 유용한 어시시턴트입니다.")
input_human_message_prompt = HumanMessagePromptTemplate.from_template("##Instruction:\n\n{instruction}\n\n##Input:\n\n{input}\n\n##Output:\n\n")
input_chat_prompt = ChatPromptTemplate.from_messages(
[system_messsage_prompt, input_human_message_prompt]
)
self.input_chain = LLMChain(llm=chat, prompt=input_chat_prompt)
instruct_human_message_prompt = HumanMessagePromptTemplate.from_template("##Instruction:\n\n{instruction}\n\n##Output:\n\n")
instruct_chat_prompt = ChatPromptTemplate.from_messages(
[system_messsage_prompt, instruct_human_message_prompt]
)
self.instruct_chain = LLMChain(llm=chat, prompt=instruct_chat_prompt)
async def __call__(self, instruction: str, input: str) -> str:
if input.strip() == '':
return await self.instruct_chain.arun({'text': '', 'instruction': instruction})
else:
return await self.input_chain.arun({'text': '', 'instruction': instruction, 'input': input})
if __name__ == '__main__':
import jsonlines
print("EVAL")
with jsonlines.open('user_oriented_instructions_deepl_ko.jsonl') as reader:
for obj in reader:
print(obj)
print(f'ChatGPT: {ChatGPTEval().run(obj)}')
break
print("TRANSLATE")
text = 'hello world!'
print(text)
print(f'ChatGPT: {ChatGPT().translate(text)}')