-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvmmg.m
82 lines (66 loc) · 2.78 KB
/
svmmg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
function [predicted,performance] = svmmg(trainingData,testingData)
trainingPredictors = trainingData(:, 1:(end-1));
trainingResponse = trainingData(:,end);
testingPredictors = testingData(:, 1:(end-1));
testingResponse = testingData(:,end);
%actual = vertcat(trainingResponse,testingResponse);
% Train a regression model
% This code specifies all the model options and trains the model.
responseScale = iqr(trainingResponse);
if ~isfinite(responseScale) || responseScale == 0.0
responseScale = 1.0;
end
boxConstraint = responseScale/1.349;
epsilon = responseScale/13.49;
regressionModel = fitrsvm(...
trainingPredictors, ...
trainingResponse, ...
'KernelFunction', 'gaussian', ...
'PolynomialOrder', [], ...
'KernelScale', 3.3, ...
'BoxConstraint', boxConstraint, ...
'Epsilon', epsilon, ...
'Standardize', false);
testingPredictions = predict(regressionModel,testingPredictors);
trainingPredictions = predict(regressionModel,trainingPredictors);
predicted = vertcat(trainingPredictions, testingPredictions);
%Testing%
mdltest = fitlm(testingResponse,testingPredictions);
Ttest= predict(mdltest);
Rtest = sqrt(mdltest.Rsquared.Ordinary);
resultstest = figure('WindowState','maximized');
YMatrix2=[testingPredictions,Ttest];
% Create axes
axes1 = axes('Parent',resultstest);
hold(axes1,'on');
% Create multiple lines using matrix input to plot
plot1 = plot(testingResponse,YMatrix2,'Color',[0 0 0]);
set(plot1(1),'DisplayName','Data','Marker','+','LineStyle','none');
%change marker style in each figure
set(plot1(2),'DisplayName','Fit','LineWidth',3);
% Create plot
plot([min(testingResponse):max(testingResponse)],[min(testingResponse):max(testingResponse)],'DisplayName','Y = T','LineStyle','-.','Color',[0 0 0]);
Coefficients = mdltest.Coefficients.Estimate;
% Create ylabel
ylabel("Output = " + Coefficients(2,1) + "*Target + " + Coefficients(1,1));
% Create xlabel
xlabel('Observed PM2.5');
% Create title
title("R = " + Rtest + "(Testing)");
% Uncomment the following line to preserve the X-limits of the axes
%xlim(axes1,[0 1]);
% Uncomment the following line to preserve the Y-limits of the axes
%ylim(axes1,[0 1]);
box(axes1,'on');
hold(axes1,'off');
% Set the remaining axes properties
set(axes1,'DataAspectRatio',[1 1 1],'PlotBoxAspectRatio',[1 1 2]);
% Create legend
legend2 = legend(axes1,'show');
set(legend2,...
'Position',[0.341752074847953 0.822324630973648 0.0592972175006811 0.0814132082480622]);
rmsetest = sqrt(mean((testingResponse - testingPredictions).^2));
maetest1 = mae(testingResponse-testingPredictions);
performance =[ Rtest , Rtest*Rtest , rmsetest, maetest1 ];
performance =array2table(performance);
performance.Properties.VariableNames = [ "R" , "Rsquare" , "RMSE" , "MAE"];