-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_dualhead.py
748 lines (635 loc) · 27.3 KB
/
main_dualhead.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
#!/usr/bin/env python
from __future__ import print_function
import os
import time
import yaml
import pprint
import random
import pickle
import shutil
import inspect
import argparse
from collections import OrderedDict, defaultdict
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
# from tensorboardX import SummaryWriter
# from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import MultiStepLR
import ipdb
from utils import count_params, import_class
def init_seed(seed):
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
# # torch.backends.cudnn.enabled = False
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
def get_parser():
# parameter priority: command line > config file > default
parser = argparse.ArgumentParser(description='DualHead-Net')
parser.add_argument(
'--work-dir',
type=str,
required=True,
help='the work folder for storing results')
parser.add_argument('--model_saved_name', default='')
parser.add_argument(
'--config',
default='./config/ntu-xview/test_bone.yaml',
help='path to the configuration file')
parser.add_argument(
'--assume-yes',
action='store_true',
help='Say yes to every prompt')
parser.add_argument(
'--phase',
default='train',
help='must be train or test')
parser.add_argument(
'--save-score',
type=str2bool,
default=False,
help='if ture, the classification score will be stored')
parser.add_argument(
'--seed',
type=int,
default=0,
help='random seed')
parser.add_argument(
'--log-interval',
type=int,
default=100,
help='the interval for printing messages (#iteration)')
parser.add_argument(
'--save-interval',
type=int,
default=1,
help='the interval for storing models (#iteration)')
parser.add_argument(
'--eval-interval',
type=int,
default=1,
help='the interval for evaluating models (#iteration)')
parser.add_argument(
'--eval-start',
type=int,
default=1,
help='The epoch number to start evaluating models')
parser.add_argument(
'--print-log',
type=str2bool,
default=True,
help='print logging or not')
parser.add_argument(
'--show-topk',
type=int,
default=[1, 5],
nargs='+',
help='which Top K accuracy will be shown')
parser.add_argument(
'--feeder',
default='feeder.feeder',
help='data loader will be used')
parser.add_argument(
'--num-worker',
type=int,
# default=os.cpu_count(),
default=16, # 4 for per GPU
help='the number of worker for data loader')
parser.add_argument(
'--train-feeder-args',
default=dict(),
help='the arguments of data loader for training')
parser.add_argument(
'--test-feeder-args',
default=dict(),
help='the arguments of data loader for test')
parser.add_argument(
'--model',
default=None,
help='the model will be used')
parser.add_argument(
'--model-args',
type=dict,
default=dict(),
help='the arguments of model')
parser.add_argument(
'--weights',
default=None,
help='the weights for network initialization')
parser.add_argument(
'--ignore-weights',
type=str,
default=[],
nargs='+',
help='the name of weights which will be ignored in the initialization')
parser.add_argument(
'--amp-opt-level',
type=int,
default=1,
help='NVIDIA Apex AMP optimization level')
parser.add_argument(
'--base-lr',
type=float,
default=0.01,
help='initial learning rate')
parser.add_argument(
'--step',
type=int,
default=[20, 40, 60],
nargs='+',
help='the epoch where optimizer reduce the learning rate')
parser.add_argument(
'--device',
type=int,
default=0,
nargs='+',
help='the indexes of GPUs for training or testing')
parser.add_argument(
'--optimizer',
default='SGD',
help='type of optimizer')
parser.add_argument(
'--nesterov',
type=str2bool,
default=False,
help='use nesterov or not')
parser.add_argument(
'--batch-size',
type=int,
default=32,
help='training batch size')
parser.add_argument(
'--test-batch-size',
type=int,
default=256,
help='test batch size')
parser.add_argument(
'--forward-batch-size',
type=int,
default=16,
help='Batch size during forward pass, must be factor of --batch-size')
parser.add_argument(
'--start-epoch',
type=int,
default=0,
help='start training from which epoch')
parser.add_argument(
'--num-epoch',
type=int,
default=120,
help='stop training in which epoch')
parser.add_argument(
'--weight-decay',
type=float,
default=0.0005,
help='weight decay for optimizer')
parser.add_argument(
'--optimizer-states',
type=str,
help='path of previously saved optimizer states')
parser.add_argument(
'--checkpoint',
type=str,
help='path of previously saved training checkpoint')
parser.add_argument(
'--debug',
type=str2bool,
default=False,
help='Debug mode; default false')
return parser
class Processor():
"""Processor for Skeleton-based Action Recognition"""
def __init__(self, arg):
self.arg = arg
self.save_arg()
if arg.phase == 'train':
# Added control through the command line
arg.train_feeder_args['debug'] = arg.train_feeder_args['debug'] or self.arg.debug
logdir = os.path.join(arg.work_dir, 'train_logs')
if not arg.train_feeder_args['debug']:
# logdir = arg.model_saved_name
if os.path.isdir(logdir):
print(f'log_dir {logdir} already exists')
if arg.assume_yes:
answer = 'y'
else:
answer = input('delete it? [y]/n:')
if answer.lower() in ('y', ''):
shutil.rmtree(logdir)
print('Dir removed:', logdir)
else:
print('Dir not removed:', logdir)
# self.train_writer = SummaryWriter(os.path.join(logdir, 'train'), 'train')
# self.val_writer = SummaryWriter(os.path.join(logdir, 'val'), 'val')
else:
pass
# self.train_writer = SummaryWriter(os.path.join(logdir, 'debug'), 'debug')
self.load_model()
self.load_param_groups()
self.load_optimizer()
self.load_lr_scheduler()
self.load_data()
self.global_step = 0
self.lr = self.arg.base_lr
self.best_acc = 0
self.best_acc_epoch = 0
if type(self.arg.device) is list:
if len(self.arg.device) > 1:
self.print_log(f'{len(self.arg.device)} GPUs available, using DataParallel')
self.model = nn.DataParallel(
self.model,
device_ids=self.arg.device,
output_device=self.output_device
)
def load_model(self):
output_device = self.arg.device[0] if type(
self.arg.device) is list else self.arg.device
self.output_device = output_device
Model = import_class(self.arg.model)
# Copy model file and main
shutil.copy2(inspect.getfile(Model), self.arg.work_dir)
shutil.copy2(os.path.join('.', __file__), self.arg.work_dir)
self.model = Model(**self.arg.model_args).cuda(output_device)
self.loss = nn.CrossEntropyLoss().cuda(output_device)
self.print_log(f'Model total number of params: {count_params(self.model)}')
if self.arg.weights:
try:
self.global_step = int(self.arg.weights[:-3].split('-')[-1])
except:
print('Cannot parse global_step from model weights filename')
self.global_step = 0
self.print_log(f'Loading weights from {self.arg.weights}')
if '.pkl' in self.arg.weights:
with open(self.arg.weights, 'r') as f:
weights = pickle.load(f)
else:
weights = torch.load(self.arg.weights)
weights = OrderedDict(
[[k.split('module.')[-1],
v.cuda(output_device)] for k, v in weights.items()])
for w in self.arg.ignore_weights:
if weights.pop(w, None) is not None:
self.print_log(f'Sucessfully Remove Weights: {w}')
else:
self.print_log(f'Can Not Remove Weights: {w}')
try:
self.model.load_state_dict(weights)
except:
state = self.model.state_dict()
diff = list(set(state.keys()).difference(set(weights.keys())))
self.print_log('Can not find these weights:')
for d in diff:
self.print_log(' ' + d)
state.update(weights)
self.model.load_state_dict(state)
def load_param_groups(self):
"""
Template function for setting different learning behaviour
(e.g. LR, weight decay) of different groups of parameters
"""
self.param_groups = defaultdict(list)
for name, params in self.model.named_parameters():
self.param_groups['other'].append(params)
self.optim_param_groups = {
'other': {'params': self.param_groups['other']}
}
def load_optimizer(self):
params = list(self.optim_param_groups.values())
if self.arg.optimizer == 'SGD':
self.optimizer = optim.SGD(
params,
lr=self.arg.base_lr,
momentum=0.9,
nesterov=self.arg.nesterov,
weight_decay=self.arg.weight_decay)
elif self.arg.optimizer == 'Adam':
self.optimizer = optim.Adam(
params,
lr=self.arg.base_lr,
weight_decay=self.arg.weight_decay)
else:
raise ValueError('Unsupported optimizer: {}'.format(self.arg.optimizer))
# Load optimizer states if any
if self.arg.checkpoint is not None:
self.print_log(f'Loading optimizer states from: {self.arg.checkpoint}')
self.optimizer.load_state_dict(torch.load(self.arg.checkpoint)['optimizer_states'])
current_lr = self.optimizer.param_groups[0]['lr']
self.print_log(f'Starting LR: {current_lr}')
self.print_log(f'Starting WD1: {self.optimizer.param_groups[0]["weight_decay"]}')
if len(self.optimizer.param_groups) >= 2:
self.print_log(f'Starting WD2: {self.optimizer.param_groups[1]["weight_decay"]}')
def load_lr_scheduler(self):
self.lr_scheduler = MultiStepLR(self.optimizer, milestones=self.arg.step, gamma=0.1)
if self.arg.checkpoint is not None:
scheduler_states = torch.load(self.arg.checkpoint)['lr_scheduler_states']
self.print_log(f'Loading LR scheduler states from: {self.arg.checkpoint}')
self.lr_scheduler.load_state_dict(scheduler_states)
self.print_log(f'Starting last epoch: {scheduler_states["last_epoch"]}')
self.print_log(f'Loaded milestones: {scheduler_states["last_epoch"]}')
def load_data(self):
Feeder = import_class(self.arg.feeder)
self.data_loader = dict()
def worker_seed_fn(worker_id):
# give workers different seeds
return init_seed(self.arg.seed + worker_id + 1)
if self.arg.phase == 'train':
self.data_loader['train'] = torch.utils.data.DataLoader(
dataset=Feeder(**self.arg.train_feeder_args),
batch_size=self.arg.batch_size,
shuffle=True,
num_workers=self.arg.num_worker,
drop_last=True,
worker_init_fn=worker_seed_fn)
self.data_loader['test'] = torch.utils.data.DataLoader(
dataset=Feeder(**self.arg.test_feeder_args),
batch_size=self.arg.test_batch_size,
shuffle=False,
num_workers=self.arg.num_worker,
drop_last=False,
worker_init_fn=worker_seed_fn)
def save_arg(self):
# save arg
arg_dict = vars(self.arg)
if not os.path.exists(self.arg.work_dir):
os.makedirs(self.arg.work_dir)
if not os.path.exists(self.arg.work_dir + '/eval_results'):
os.makedirs(self.arg.work_dir + '/eval_results')
with open(os.path.join(self.arg.work_dir, 'config.yaml'), 'w') as f:
yaml.dump(arg_dict, f)
def print_time(self):
localtime = time.asctime(time.localtime(time.time()))
self.print_log(f'Local current time: {localtime}')
def print_log(self, s, print_time=True):
if print_time:
localtime = time.asctime(time.localtime(time.time()))
s = f'[ {localtime} ] {s}'
print(s)
if self.arg.print_log:
with open(os.path.join(self.arg.work_dir, 'log.txt'), 'a') as f:
print(s, file=f)
def record_time(self):
self.cur_time = time.time()
return self.cur_time
def split_time(self):
split_time = time.time() - self.cur_time
self.record_time()
return split_time
def save_states(self, epoch, states, out_folder, out_name):
out_folder_path = os.path.join(self.arg.work_dir, out_folder)
out_path = os.path.join(out_folder_path, out_name)
os.makedirs(out_folder_path, exist_ok=True)
torch.save(states, out_path)
def save_checkpoint(self, epoch, out_folder='checkpoints'):
state_dict = {
'epoch': epoch,
'optimizer_states': self.optimizer.state_dict(),
'lr_scheduler_states': self.lr_scheduler.state_dict(),
}
checkpoint_name = f'checkpoint-{epoch}-fwbz{self.arg.forward_batch_size}-{int(self.global_step)}.pt'
self.save_states(epoch, state_dict, out_folder, checkpoint_name)
def save_weights(self, epoch, out_folder='weights'):
state_dict = self.model.state_dict()
weights = OrderedDict([
[k.split('module.')[-1], v.cpu()]
for k, v in state_dict.items()
])
weights_name = f'weights-{epoch}-{int(self.global_step)}.pt'
self.save_states(epoch, weights, out_folder, weights_name)
def train(self, epoch, save_model=False):
self.model.train()
loader = self.data_loader['train']
loss_values = []
acc_values = []
# self.train_writer.add_scalar('epoch', epoch + 1, self.global_step)
self.record_time()
timer = dict(dataloader=0.001, model=0.001, statistics=0.001)
current_lr = self.optimizer.param_groups[0]['lr']
self.print_log(f'Training epoch: {epoch + 1}, LR: {current_lr:.4f}')
process = tqdm(loader, dynamic_ncols=True)
for batch_idx, (data, label, index) in enumerate(process):
self.global_step += 1
# get data
with torch.no_grad():
data = data.float().cuda(self.output_device)
label = label.long().cuda(self.output_device)
timer['dataloader'] += self.split_time()
# backward
self.optimizer.zero_grad()
############## Gradient Accumulation for Smaller Batches ##############
real_batch_size = self.arg.forward_batch_size
splits = len(data) // real_batch_size
assert len(data) % real_batch_size == 0, \
'Real batch size should be a factor of arg.batch_size!'
for i in range(splits):
left = i * real_batch_size
right = left + real_batch_size
batch_data, batch_label = data[left:right], label[left:right]
# forward
fine_out, coarse_out = self.model(batch_data)
coarse_loss = self.loss(coarse_out, batch_label) / splits
fine_loss = self.loss(fine_out, batch_label) / splits
loss = (coarse_loss + fine_loss) / 2.
output = (coarse_out + fine_out) / 2.
# backward
loss.backward()
loss_values.append(loss.item())
timer['model'] += self.split_time()
# Display loss
process.set_description(f'(BS {real_batch_size}) loss: {loss.item():.4f}')
value, predict_label = torch.max(output, 1)
acc = torch.mean((predict_label == batch_label).float())
acc_values.append(acc.item())
# self.train_writer.add_scalar('acc', acc, self.global_step)
# self.train_writer.add_scalar('loss', loss.item() * splits, self.global_step)
# self.train_writer.add_scalar('loss_l1', l1, self.global_step)
#####################################
# torch.nn.utils.clip_grad_norm_(self.model.parameters(), 2)
self.optimizer.step()
# statistics
self.lr = self.optimizer.param_groups[0]['lr']
# self.train_writer.add_scalar('lr', self.lr, self.global_step)
timer['statistics'] += self.split_time()
# Delete output/loss after each batch since it may introduce extra mem during scoping
# https://discuss.pytorch.org/t/gpu-memory-consumption-increases-while-training/2770/3
del output
del loss
# statistics of time consumption and loss
proportion = {
k: f'{int(round(v * 100 / sum(timer.values()))):02d}%'
for k, v in timer.items()
}
mean_loss = np.mean(loss_values)
num_splits = self.arg.batch_size // self.arg.forward_batch_size
# ipdb.set_trace()
mean_acc = np.mean(acc_values)
self.print_log(
f'\tMean training loss: {mean_loss:.4f} (BS {self.arg.batch_size}: {mean_loss * num_splits:.4f}).')
self.print_log(
f'\tMean training acc: {mean_acc:.4f} (BS {self.arg.batch_size}: {mean_acc * num_splits:.4f}).')
self.print_log('\tTime consumption: [Data]{dataloader}, [Network]{model}'.format(**proportion))
# PyTorch > 1.2.0: update LR scheduler here with `.step()`
# and make sure to save the `lr_scheduler.state_dict()` as part of checkpoint
self.lr_scheduler.step()
if save_model:
# save training checkpoint & weights
self.save_weights(epoch + 1)
self.save_checkpoint(epoch + 1)
def eval(self, epoch, save_score=False, loader_name=['test'], wrong_file=None, result_file=None):
# Skip evaluation if too early
if epoch + 1 < self.arg.eval_start:
return
if wrong_file is not None:
f_w = open(wrong_file, 'w')
if result_file is not None:
f_r = open(result_file, 'w')
with torch.no_grad():
self.model = self.model.cuda(self.output_device)
self.model.eval()
self.print_log(f'Eval epoch: {epoch + 1}')
for ln in loader_name:
loss_values = []
fine_loss_values = []
coarse_loss_values = []
score_batches = []
fine_score_batches = []
coarse_score_batches = []
step = 0
process = tqdm(self.data_loader[ln], dynamic_ncols=True)
for batch_idx, (data, label, index) in enumerate(process):
data = data.float().cuda(self.output_device)
label = label.long().cuda(self.output_device)
fine_out, coarse_out = self.model(data)
coarse_loss = self.loss(coarse_out, label)
fine_loss = self.loss(fine_out, label)
loss = (coarse_loss + fine_loss) / 2.
output = (coarse_out + fine_out) / 2.
score_batches.append(output.data.cpu().numpy())
fine_score_batches.append(fine_out.data.cpu().numpy())
coarse_score_batches.append(coarse_out.data.cpu().numpy())
loss_values.append(loss.item())
fine_loss_values.append(fine_loss.item())
coarse_loss_values.append(coarse_loss.item())
_, predict_label = torch.max(output.data, 1)
step += 1
if wrong_file is not None or result_file is not None:
predict = list(predict_label.cpu().numpy())
true = list(label.data.cpu().numpy())
for i, x in enumerate(predict):
if result_file is not None:
f_r.write(str(index[i])+ ',' + str(x) + ',' + str(true[i]) + '\n')
if x != true[i] and wrong_file is not None:
f_w.write(str(index[i]) + ',' + str(x) + ',' + str(true[i]) + '\n')
score = np.concatenate(score_batches)
fine_score = np.concatenate(fine_score_batches)
coarse_score = np.concatenate(coarse_score_batches)
loss = np.mean(loss_values)
fine_loss = np.mean(fine_loss_values)
coarse_loss = np.mean(coarse_loss_values)
accuracy = self.data_loader[ln].dataset.top_k(score, 1)
fine_accuracy = self.data_loader[ln].dataset.top_k(fine_score, 1)
coarse_accuracy = self.data_loader[ln].dataset.top_k(coarse_score, 1)
if accuracy > self.best_acc:
self.best_acc = accuracy
self.best_acc_epoch = epoch + 1
self.best_acc_fine = fine_accuracy
self.best_acc_coarse = coarse_accuracy
score_dict = dict(zip(self.data_loader[ln].dataset.sample_name, score))
with open(self.arg.work_dir + '/eval_results/best_acc' + '.pkl'.format(epoch, accuracy), 'wb') as f:
pickle.dump(score_dict, f)
# showing the best accuracy score
with open(self.arg.work_dir + '/eval_results/best_acc_{}_{:.5f}.pkl'.format(epoch, accuracy),
'wb') as f:
pickle.dump(score_dict, f)
score_dict = dict(zip(self.data_loader[ln].dataset.sample_name, score))
with open(self.arg.work_dir + '/eval_results/acc_{}_{:.5f}.pkl'.format(epoch, accuracy), 'wb') as f:
pickle.dump(score_dict, f)
self.print_log(f'\tModel: {self.arg.work_dir}')
self.print_log(
'\tBest Accuracy: {:.5f} | Best Epoch: {} | Fine Accuracy: {:.5f} | Coarse Accuracy: {:.5f}'.format(
self.best_acc,
self.best_acc_epoch,
self.best_acc_fine,
self.best_acc_coarse))
if self.arg.phase == 'train' and not self.arg.debug:
# self.val_writer.add_scalar('loss', loss, self.global_step)
# self.val_writer.add_scalar('loss_l1', l1, self.global_step)
# self.val_writer.add_scalar('acc', accuracy, self.global_step)
pass
score_dict = dict(zip(self.data_loader[ln].dataset.sample_name, score))
self.print_log(f'\tMean {ln} loss of {len(self.data_loader[ln])} batches: {np.mean(loss_values):.4f}.')
for k in self.arg.show_topk:
self.print_log(
f'\tTop {k}: {100 * self.data_loader[ln].dataset.top_k(score, k):.2f}% | \tFine: {100 * self.data_loader[ln].dataset.top_k(fine_score, k):.2f}% | \tCoarse: {100 * self.data_loader[ln].dataset.top_k(coarse_score, k):.2f}%')
if save_score:
with open(self.arg.work_dir + '/eval_results/{}_score_acc_{}_{:.5f}.pkl'.format(ln, epoch, accuracy),
'wb') as f:
pickle.dump(score_dict, f)
def start(self):
if self.arg.phase == 'train':
self.print_log(f'Parameters:\n{pprint.pformat(vars(self.arg))}\n')
self.print_log(f'Model total number of params: {count_params(self.model)}')
self.global_step = self.arg.start_epoch * len(self.data_loader['train']) / self.arg.batch_size
for epoch in range(self.arg.start_epoch, self.arg.num_epoch):
save_model = ((epoch + 1) % self.arg.save_interval == 0) or (epoch + 1 == self.arg.num_epoch)
self.train(epoch, save_model=save_model)
self.eval(epoch, save_score=self.arg.save_score, loader_name=['test'])
num_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
self.print_log(f'Best accuracy: {self.best_acc}')
self.print_log(f'Epoch number: {self.best_acc_epoch}')
self.print_log(f'Model name: {self.arg.work_dir}')
self.print_log(f'Model total number of params: {num_params}')
self.print_log(f'Weight decay: {self.arg.weight_decay}')
self.print_log(f'Base LR: {self.arg.base_lr}')
self.print_log(f'Batch Size: {self.arg.batch_size}')
self.print_log(f'Forward Batch Size: {self.arg.forward_batch_size}')
self.print_log(f'Test Batch Size: {self.arg.test_batch_size}')
elif self.arg.phase == 'test':
if not self.arg.test_feeder_args['debug']:
wf = os.path.join(self.arg.work_dir, 'wrong-samples.txt')
rf = os.path.join(self.arg.work_dir, 'right-samples.txt')
else:
wf = rf = None
if self.arg.weights is None:
raise ValueError('Please appoint --weights.')
self.print_log(f'Model: {self.arg.model}')
self.print_log(f'Weights: {self.arg.weights}')
self.eval(
epoch=0,
save_score=self.arg.save_score,
loader_name=['test'],
wrong_file=wf,
result_file=rf
)
self.print_log('Done.\n')
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def main():
parser = get_parser()
# load arg form config file
p = parser.parse_args()
if p.config is not None:
with open(p.config, 'r') as f:
default_arg = yaml.load(f)
key = vars(p).keys()
for k in default_arg.keys():
if k not in key:
print('WRONG ARG:', k)
assert (k in key)
parser.set_defaults(**default_arg)
arg = parser.parse_args()
init_seed(arg.seed)
processor = Processor(arg)
processor.start()
if __name__ == '__main__':
main()