-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathops.py
214 lines (154 loc) · 7.12 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import tensorflow as tf
import tensorflow.contrib as tf_contrib
from utils import pytorch_kaiming_weight_factor
factor, mode, uniform = pytorch_kaiming_weight_factor(a=0.0, uniform=False)
weight_init = tf_contrib.layers.variance_scaling_initializer(factor=factor, mode=mode, uniform=uniform)
weight_regularizer = tf_contrib.layers.l2_regularizer(scale=0.0001)
##################################################################################
# Layer
##################################################################################
def conv(x, channels, kernel=4, stride=2, pad=0, pad_type='zero', use_bias=True, scope='conv'):
with tf.variable_scope(scope):
if scope.__contains__("discriminator") :
weight_init = tf.random_normal_initializer(mean=0.0, stddev=0.02)
else :
weight_init = tf_contrib.layers.variance_scaling_initializer()
if pad > 0:
h = x.get_shape().as_list()[1]
if h % stride == 0:
pad = pad * 2
else:
pad = max(kernel - (h % stride), 0)
pad_top = pad // 2
pad_bottom = pad - pad_top
pad_left = pad // 2
pad_right = pad - pad_left
if pad_type == 'zero':
x = tf.pad(x, [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]])
if pad_type == 'reflect':
x = tf.pad(x, [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]], mode='REFLECT')
x = tf.layers.conv2d(inputs=x, filters=channels,
kernel_size=kernel, kernel_initializer=weight_init,
kernel_regularizer=weight_regularizer,
strides=stride, use_bias=use_bias)
return x
def fully_connected(x, units, use_bias=True, scope='fully_connected'):
with tf.variable_scope(scope):
x = flatten(x)
x = tf.layers.dense(x, units=units, kernel_initializer=weight_init,
kernel_regularizer=weight_regularizer,
use_bias=use_bias)
return x
def flatten(x) :
return tf.layers.flatten(x)
##################################################################################
# Residual-block
##################################################################################
def resblock(x_init, channels, use_bias=True, scope='resblock'):
with tf.variable_scope(scope):
with tf.variable_scope('res1'):
x = conv(x_init, channels, kernel=3, stride=1, pad=1, pad_type='reflect', use_bias=use_bias)
x = instance_norm(x)
x = relu(x)
with tf.variable_scope('res2'):
x = conv(x, channels, kernel=3, stride=1, pad=1, pad_type='reflect', use_bias=use_bias)
x = instance_norm(x)
return x + x_init
def adaptive_resblock(x_init, channels, gamma1, beta1, gamma2, beta2, use_bias=True, scope='adaptive_resblock') :
with tf.variable_scope(scope):
with tf.variable_scope('res1'):
x = conv(x_init, channels, kernel=3, stride=1, pad=1, pad_type='reflect', use_bias=use_bias)
x = adaptive_instance_norm(x, gamma1, beta1)
x = relu(x)
with tf.variable_scope('res2'):
x = conv(x, channels, kernel=3, stride=1, pad=1, pad_type='reflect', use_bias=use_bias)
x = adaptive_instance_norm(x, gamma2, beta2)
return x + x_init
##################################################################################
# Sampling
##################################################################################
def down_sample(x) :
return tf.layers.average_pooling2d(x, pool_size=3, strides=2, padding='SAME')
def up_sample(x, scale_factor=2):
_, h, w, _ = x.get_shape().as_list()
new_size = [h * scale_factor, w * scale_factor]
return tf.image.resize_nearest_neighbor(x, size=new_size)
def adaptive_avg_pooling(x):
# global average pooling
gap = tf.reduce_mean(x, axis=[1, 2], keep_dims=True)
return gap
##################################################################################
# Activation function
##################################################################################
def lrelu(x, alpha=0.01):
# pytorch alpha is 0.01
return tf.nn.leaky_relu(x, alpha)
def relu(x):
return tf.nn.relu(x)
def tanh(x):
return tf.tanh(x)
##################################################################################
# Normalization function
##################################################################################
def adaptive_instance_norm(content, gamma, beta, epsilon=1e-5):
# gamma, beta = style_mean, style_std from MLP
c_mean, c_var = tf.nn.moments(content, axes=[1, 2], keep_dims=True)
c_std = tf.sqrt(c_var + epsilon)
return gamma * ((content - c_mean) / c_std) + beta
def instance_norm(x, scope='instance_norm'):
return tf_contrib.layers.instance_norm(x,
epsilon=1e-05,
center=True, scale=True,
scope=scope)
def layer_norm(x, scope='layer_norm') :
return tf_contrib.layers.layer_norm(x,
center=True, scale=True,
scope=scope)
##################################################################################
# Loss function
##################################################################################
"""
Author use LSGAN
For LSGAN, multiply each of G and D by 0.5.
However, MUNIT authors did not do this.
"""
def discriminator_loss(type, real, fake):
n_scale = len(real)
loss = []
real_loss = 0
fake_loss = 0
for i in range(n_scale) :
if type == 'lsgan' :
real_loss = tf.reduce_mean(tf.squared_difference(real[i], 1.0))
fake_loss = tf.reduce_mean(tf.square(fake[i]))
if type == 'gan' :
real_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(real[i]), logits=real[i]))
fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(fake[i]), logits=fake[i]))
loss.append(real_loss + fake_loss)
return sum(loss)
def generator_loss(type, fake):
n_scale = len(fake)
loss = []
fake_loss = 0
for i in range(n_scale) :
if type == 'lsgan' :
fake_loss = tf.reduce_mean(tf.squared_difference(fake[i], 1.0))
if type == 'gan' :
fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(fake[i]), logits=fake[i]))
loss.append(fake_loss)
return sum(loss)
def L1_loss(x, y):
loss = tf.reduce_mean(tf.abs(x - y))
return loss
def regularization_loss(scope_name) :
"""
If you want to use "Regularization"
g_loss += regularization_loss('generator')
d_loss += regularization_loss('discriminator')
"""
collection_regularization = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = []
for item in collection_regularization :
if scope_name in item.name :
loss.append(item)
return tf.reduce_sum(loss)