-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathwrite_video.py
256 lines (215 loc) · 10 KB
/
write_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2017 Takuma Yagi <tyagi@iis.u-tokyo.ac.jp>
#
# Distributed under terms of the MIT license.
from __future__ import print_function
from __future__ import division
from six.moves import range
import os
import time
import json
import argparse
import joblib
from box import Box
import numpy as np
import cv2
from utils.dataset import SceneDatasetForAnalysis
from utils.plot import draw_line, draw_dotted_line, draw_x
from mllogger import MLLogger
logger = MLLogger(init=False)
if __name__ == "__main__":
"""
Write prediction as video from prediction.json
By default, blue is input, red is gt, green is prediction
This method requires vid, frame, pid but if the latter two is unspecified it'll give you candidates
Input:
* fold_path: fold id (e.g. 5fold_yymmss_HHMMSS/yymmss_HHMMSS)
* traj_type: trajectory type to output (0: front, 1: back, 2: across, 3:other)
* img_ratio: output image ratio (default: 0.5, 640x480)
* no_pred: do not plot prediction
* debug: if True, do not predict any images
* output_dir: directory to plot images and videos
* vid: video id (e.g. GOPR0235U20)
* frame: video frame number
* pid: person id number
Output:
plot images and videos to <output_dir>/yymmss_HHMMSS/
"""
parser = argparse.ArgumentParser()
# Data
parser.add_argument('fold_path', type=str)
parser.add_argument('--traj_type', type=int, default=-1)
parser.add_argument('--vid', type=str)
parser.add_argument('--frame', type=int, default=-1)
parser.add_argument('--pid', type=int, default=-1)
parser.add_argument('--nb_pause', type=int, default=5)
parser.add_argument('--img_ratio', type=float, default=0.5)
parser.add_argument('--ratio', type=float, default=0.7)
parser.add_argument('--thick', type=int, default=10)
parser.add_argument('--size_x', type=int, default=12)
parser.add_argument('--size_circle', type=int, default=20)
parser.add_argument('--fps', type=float, default=3)
parser.add_argument('--no_video', action='store_true')
parser.add_argument('--no_past', action='store_true')
parser.add_argument('--no_pred', action='store_true')
parser.add_argument('--no_gt', action='store_true')
parser.add_argument('--simultaneous', action='store_true')
# Others
parser.add_argument('--debug', action='store_true')
parser.add_argument('--output_dir', type=str, default="video_plots")
args = parser.parse_args()
start = time.time()
data_dir = "data"
logger.initialize(args.output_dir, debug=args.debug)
logger.info(vars(args))
save_dir = logger.get_savedir()
logger.info("Written to {}".format(save_dir))
nb_pause = args.nb_pause
output_image_list = []
prediction_path = os.path.join(args.fold_path, "prediction.json")
with open(prediction_path) as f:
data = json.load(f)
predictions = data["predictions"]
sargs = Box(data["arguments"])
print(predictions.keys())
if args.vid not in predictions:
print("No prediction found: aborted {} {} {}".format(args.vid, args.frame, args.pid))
exit(1)
if str(args.frame) not in predictions[args.vid] or str(args.pid) not in predictions[args.vid][str(args.frame)]:
print("Specify all vid, frame and pid: aborted {} {} {}".format(args.vid, args.frame, args.pid))
if args.vid in predictions and str(args.frame) in predictions[args.vid]:
print("Valid pids: {}".format(sorted(predictions[args.vid][str(args.frame)].keys())))
elif args.vid in predictions:
print("Valid frames {}".format(sorted(predictions[args.vid].keys())))
exit(1)
print("Loading data...")
dataset = joblib.load(sargs.in_data)
valid_split = sargs.eval_split + sargs.nb_splits * 2
valid_dataset = SceneDatasetForAnalysis(
dataset, sargs.input_len, sargs.offset_len if "offset" in sargs else 10, sargs.pred_len,
sargs.width, sargs.height)
color = (0, 255, 0)
color_ps = (255, 64, 64)
color_gt = (0, 0, 255)
color_pr = (0, 255, 0)
color_bb = (204, 102, 255)
# pid search
if args.frame != -1:
pid_list = []
for idx in range(len(valid_dataset)):
_, _, _, vid, frame, pid = valid_dataset.get_example(idx)[:6]
if vid == args.vid and frame == args.frame:
pid_list.append(pid)
print("Found pid: {}".format(np.unique(pid_list)))
if len(np.unique(pid_list)) == 1:
args.pid = pid_list[0]
print("Continue")
else:
exit(1)
idx_list = []
for idx in range(len(valid_dataset)):
_, _, _, vid, frame, pid = valid_dataset.get_example(idx)[:6]
if vid == args.vid and pid == args.pid:
idx_list.append((idx, frame))
if len(idx_list) == 0:
print("Not found: {} {}".format(args.vid, args.pid))
exit(1)
if args.frame == -1:
print("Candidate: {}".format(idx_list))
exit(1)
if args.frame not in map(lambda x: x[1], idx_list):
print("Wrong frame")
exit(1)
selected_idx = idx_list[list(map(lambda x: x[1], idx_list)).index(args.frame)][0]
past, ground_truth, pose, vid, frame, pid, flipped = valid_dataset.get_example(selected_idx)[:7]
img_dir = os.path.join(data_dir, "pseudo_viz", vid, "images")
def draw_past(img_dir, b, offset):
past, ground_truth, pose, vid, frame, pid, flipped = b[:7]
im = cv2.imread(os.path.join(img_dir, "rgb_{:05d}.jpg".format(int(frame) + offset)))
im = cv2.addWeighted(im, args.ratio, im, 0.0, 0)
# Past
if offset > 0:
cv2.circle(im, (int(past[0][0]), int(past[0][1])), args.size_circle, color_ps, -1)
im = draw_line(im, past[:offset+1], color_ps, 1.0, args.thick)
im = draw_x(im, past[offset], color_ps, 1.0, args.size_x)
return im
def draw_prediction(img_dir, b, offset_g, offset_p, predictions, img_offset, no_pred=False, no_gt=False):
past, ground_truth, pose, vid, frame, pid, flipped = b[:7]
vid, frame, pid, flipped, py, pe, pp, err, traj_type = predictions[vid][str(frame)][str(pid)]
predicted = np.array(py)[...,:2]
im = cv2.imread(os.path.join(img_dir, "rgb_{:05d}.jpg".format(int(frame) + img_offset)))
im = cv2.addWeighted(im, args.ratio, im, 0.0, 0)
cv2.circle(im, (int(past[0][0]), int(past[0][1])), args.size_circle, color_ps, -1)
im = draw_line(im, past, color_ps, 1.0, args.thick)
im = draw_x(im, past[-1], color_ps, 1.0, args.size_x)
if not args.no_gt:
if offset_g > 0:
im = draw_dotted_line(im, ground_truth[:offset_g+1], color_gt, 1.0, args.thick)
if offset_g > -1:
cv2.circle(im, (int(ground_truth[0][0]), int(ground_truth[0][1])), args.size_circle, color_gt, -1)
im = draw_x(im, ground_truth[offset_g], color_gt, 1.0, args.size_x)
if not no_pred:
if offset_p > 0:
im = draw_dotted_line(im, predicted[:offset_p+1], color_pr, 1.0, args.thick, 0.7)
if offset_p > -1:
im = draw_x(im, predicted[offset_p], color_pr, 1.0, args.size_x)
return im
def write_img(oframe, out_img):
cv2.imwrite("{}/{}_{}_{:02d}.jpg".format(save_dir, args.vid, args.pid, oframe), out_img)
start_b = valid_dataset.get_example(selected_idx)
input_len = sargs["input_len"]
pred_len = sargs["pred_len"]
# Input
if not args.no_past:
for x in range(input_len):
out = draw_past(img_dir, start_b, x)
write_img(x, out)
output_image_list.append(out)
if not args.no_pred and not args.simultaneous:
if not args.no_past:
# Pause
for x in range(nb_pause):
out = draw_past(img_dir, start_b, input_len-1)
output_image_list.append(out)
# Extend prediction
for x in range(pred_len):
out = draw_prediction(img_dir, start_b, -1, x, predictions, input_len - 1)
write_img(input_len + x, out)
output_image_list.append(out)
# Pause
for x in range(nb_pause):
out = draw_prediction(img_dir, start_b, -1, pred_len - 1, predictions, input_len - 1, args.no_pred, args.no_gt)
output_image_list.append(out)
# Actual future
for x in range(pred_len):
if args.simultaneous:
out = draw_prediction(img_dir, start_b, x, x, predictions, input_len + x, args.no_pred, args.no_gt)
else:
out = draw_prediction(img_dir, start_b, x, pred_len - 1, predictions, input_len + x, args.no_pred, args.no_gt)
write_img(input_len + pred_len + x, out)
output_image_list.append(out)
# Pause
for x in range(nb_pause):
out = draw_prediction(img_dir, start_b, pred_len - 1, pred_len - 1,
predictions, input_len + pred_len - 1, args.no_pred)
output_image_list.append(out)
if not args.no_video:
if args.no_pred:
video_name = os.path.join(save_dir, "{}_{}_{}_np.avi".format(args.vid, args.frame, args.pid))
#video_name = os.path.join(save_dir, "{}_{}_{}_np.mp4".format(args.vid, args.frame, args.pid))
else:
video_name = os.path.join(save_dir, "{}_{}_{}.avi".format(args.vid, args.frame, args.pid))
#video_name = os.path.join(save_dir, "{}_{}_{}.mp4".format(args.vid, args.frame, args.pid))
fourcc = cv2.VideoWriter_fourcc(*'XVID')
width, height = int(sargs.width * args.img_ratio), int(sargs.height * args.img_ratio)
writer = cv2.VideoWriter(video_name, fourcc, args.fps, (width, height))
#writer = cv2.VideoWriter(video_name, 0x21, args.fps, (width, height))
for img in output_image_list:
img = cv2.resize(img, (width, height))
writer.write(img)
writer.release()
logger.info("Wrote video into {}".format(video_name))
logger.info("Elapsed time: {} (s), Saved at {}".format(time.time()-start, save_dir))