-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_diffuse_ddlp.py
339 lines (308 loc) · 15.2 KB
/
train_diffuse_ddlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
Main training function of DiffuseDDLP
"""
import argparse
import os
import shutil
import json
from utils.util_func import prepare_logdir, get_config
from tqdm.auto import tqdm
# torch
import torch
from torch.utils.data import DataLoader
# datasets
from datasets.get_dataset import get_video_dataset
# models
from modules.diffusion_modules import TrainerDiffuseDDLP, GaussianDiffusionPINT, PINTDenoiser
from models import ObjectDynamicsDLP
"""
Particle Normalization
Calculate and save the latent statistics of particles for normalization/standardization purposes.
Denoisers' input is usually normalized, thus, we need to calculate the statistics of the particles.
"""
class ParticleNormalization(torch.nn.Module):
def __init__(self, config, mode='minmax', eps=1e-5):
super().__init__()
assert mode in ["minmax", "std"], f'mode: {mode} not supported'
self.diffusion_config = config
self.root = config['ddlp_dir']
self.eps = eps
self.ds = config['ds']
device = config['device']
if 'cuda' in device:
device = torch.device(f'{device}' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
self.device = device
self.mode = mode
self.ddlp_dir = config['ddlp_dir']
self.ddlp_ckpt = config['ddlp_ckpt']
ddlp_conf = os.path.join(self.ddlp_dir, 'hparams.json')
ddlp_config = get_config(ddlp_conf)
self.config = ddlp_config
self.particle_feature_dim = self.config['learned_feature_dim']
self.fg_total_dim = 2 + 2 + 2 + self.particle_feature_dim # (x, y), (scale_x, scale_y), depth, transparency
self.bg_total_dim = self.particle_feature_dim
mu = torch.zeros(self.fg_total_dim)
self.register_buffer('mu', mu)
mu_bg = torch.zeros(self.bg_total_dim)
self.register_buffer('mu_bg', mu_bg)
std = torch.ones(self.fg_total_dim)
self.register_buffer('std', std)
std_bg = torch.ones(self.bg_total_dim)
self.register_buffer('std_bg', std_bg)
min_val = torch.zeros(self.fg_total_dim)
self.register_buffer('min_val', min_val)
max_val = torch.zeros(self.fg_total_dim)
self.register_buffer('max_val', max_val)
min_val_bg = torch.zeros(self.bg_total_dim)
self.register_buffer('min_val_bg', min_val_bg)
max_val_bg = torch.zeros(self.bg_total_dim)
self.register_buffer('max_val_bg', max_val_bg)
# get statistics
self.get_latent_statistics()
print(f'mu: {self.mu}, std: {self.std}, min: {self.min_val}, max: {self.max_val}')
def get_latent_statistics(self):
stats_path = os.path.join(self.root, 'latent_stats.pth')
if os.path.exists(stats_path):
params = torch.load(stats_path)
self.load_state_dict(params)
print(f'latent stats loaded from {stats_path}')
else:
# calculate stats
print(f'latent stats not found, calculating stats...')
self.calc_latent_stats()
def calc_latent_stats(self, ):
# load model
ddlp_config = self.config
ddlp_ckpt = self.ddlp_ckpt
device = self.device
# load model
image_size = ddlp_config['image_size']
ch = ddlp_config['ch']
enc_channels = ddlp_config['enc_channels']
prior_channels = ddlp_config['prior_channels']
use_correlation_heatmaps = ddlp_config['use_correlation_heatmaps']
enable_enc_attn = ddlp_config['enable_enc_attn']
filtering_heuristic = ddlp_config['filtering_heuristic']
model = ObjectDynamicsDLP(cdim=ch, enc_channels=enc_channels, prior_channels=prior_channels,
image_size=image_size, n_kp=ddlp_config['n_kp'],
learned_feature_dim=ddlp_config['learned_feature_dim'],
pad_mode=ddlp_config['pad_mode'],
sigma=ddlp_config['sigma'],
dropout=ddlp_config['dropout'], patch_size=ddlp_config['patch_size'],
n_kp_enc=ddlp_config['n_kp_enc'],
n_kp_prior=ddlp_config['n_kp_prior'], kp_range=ddlp_config['kp_range'],
kp_activation=ddlp_config['kp_activation'],
anchor_s=ddlp_config['anchor_s'],
use_resblock=ddlp_config['use_resblock'],
timestep_horizon=ddlp_config['timestep_horizon'],
predict_delta=ddlp_config['predict_delta'],
scale_std=ddlp_config['scale_std'],
offset_std=ddlp_config['offset_std'], obj_on_alpha=ddlp_config['obj_on_alpha'],
obj_on_beta=ddlp_config['obj_on_beta'], pint_heads=ddlp_config['pint_heads'],
pint_layers=ddlp_config['pint_layers'], pint_dim=ddlp_config['pint_dim'],
use_correlation_heatmaps=use_correlation_heatmaps,
enable_enc_attn=enable_enc_attn, filtering_heuristic=filtering_heuristic).to(device)
model.load_state_dict(torch.load(ddlp_ckpt, map_location=device))
model.eval()
model.requires_grad_(False)
print(f"loaded ddlp model from {ddlp_ckpt}")
print(f"particle normalizer: loaded ddlp model from {ddlp_ckpt}")
seq_len = 50 if self.ds == 'traffic' else 100
ds = get_video_dataset(self.ds, root=self.diffusion_config['ds_root'], mode='train', seq_len=seq_len)
dl = DataLoader(ds, batch_size=32, shuffle=False, pin_memory=True, num_workers=4)
pbar = tqdm(iterable=dl)
z_all = []
z_bg_all = []
for i, batch in enumerate(pbar):
x = batch[0][:, :self.diffusion_config['diffuse_frames']].to(device)
x_prior = x
batch_size, timesteps, ch, h, w = x.shape
fg_dict = model.fg_sequential_opt(x, deterministic=True, x_prior=x, reshape=True)
# encoder
z = fg_dict['z']
z_features = fg_dict['z_features']
z_obj_on = fg_dict['obj_on']
z_depth = fg_dict['z_depth']
z_scale = fg_dict['z_scale']
# decoder
bg_mask = fg_dict['bg_mask']
x_in = x.view(-1, *x.shape[2:]) # [bs * T, ...]
bg_dict = model.bg_module(x_in, bg_mask, deterministic=True)
z_bg = bg_dict['z_bg']
z_kp_bg = bg_dict['z_kp']
# collect and pad
z_fg = torch.cat([z, z_scale, z_depth, z_obj_on.unsqueeze(-1), z_features], dim=-1)
# [batch_size * timesteps, n_kp, features]
z_fg = z_fg.view(-1, *z_fg.shape[2:])
# [batch_size * timesteps * n_kp, features]
z_all.append(z_fg.data.cpu())
z_bg_all.append(z_bg.data.cpu())
pbar.close()
z_all = torch.cat(z_all, dim=0)
z_bg_all = torch.cat(z_bg_all, dim=0)
self.mu = z_all.mean(0)
self.std = z_all.std(0)
self.min_val = z_all.min(0)[0]
self.max_val = z_all.max(0)[0]
self.mu_bg = z_bg_all.mean(0)
self.std_bg = z_bg_all.std(0)
self.min_val_bg = z_bg_all.min(0)[0]
self.max_val_bg = z_bg_all.max(0)[0]
stats_path = os.path.join(self.root, 'latent_stats.pth')
torch.save(self.state_dict(), stats_path)
print(f'saved statistics @ {stats_path}')
def normalize(self, z=None, z_bg=None):
if self.mode == 'minmax':
if z is not None:
z = (z - self.min_val) / (self.max_val - self.min_val + self.eps) # [0, 1]
z = 2 * z - 1 # [-1, 1]
if z_bg is not None:
z_bg = (z_bg - self.min_val_bg) / (self.max_val_bg - self.min_val_bg + self.eps) # [0, 1]
z_bg = 2 * z_bg - 1 # [-1, 1]
else:
# std
if z is not None:
z = (z - self.mu) / (self.std + self.eps)
if z_bg is not None:
z_bg = (z_bg - self.mu_bg) / (self.std_bg + self.eps)
return z, z_bg
def unnormalize(self, z=None, z_bg=None):
if self.mode == 'minmax':
if z is not None:
z = (z + 1) / 2 # [0, 1]
z = z * (self.max_val - self.min_val + self.eps) + self.min_val
if z_bg is not None:
z_bg = (z_bg + 1) / 2 # [0, 1]
z_bg = z_bg * (self.max_val_bg - self.min_val_bg + self.eps) + self.min_val_bg
else:
# std
if z is not None:
z = z * (self.std + self.eps) + self.mu
if z_bg is not None:
z_bg = z_bg * (self.std_bg + self.eps) + self.mu_bg
return z, z_bg
def forward(self, z=None, z_bg=None, normalize=True):
if normalize:
return self.normalize(z, z_bg)
else:
return self.unnormalize(z, z_bg)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Diffusion DDLP Trainer")
parser.add_argument("-c", "--config", type=str, default='diffuse_ddlp',
help="json file name of config file in './configs'")
args = parser.parse_args()
# parse input
conf = args.config
if conf.endswith('json'):
conf_path = os.path.join('./configs', conf)
else:
conf_path = os.path.join('./configs', f'{conf}.json')
diffusion_config = get_config(conf_path)
ds = diffusion_config['ds']
ds_root = diffusion_config['ds_root'] # dataset root
batch_size = diffusion_config['batch_size']
diffuse_frames = diffusion_config['diffuse_frames'] # number of particle frames to generate
lr = diffusion_config['lr']
train_num_steps = diffusion_config['train_num_steps']
diffusion_num_steps = diffusion_config['diffusion_num_steps']
loss_type = diffusion_config['loss_type']
particle_norm = diffusion_config['particle_norm']
device = diffusion_config['device']
if 'cuda' in device:
device = torch.device(f'{device}' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
"""
load pre-trained DDLP
"""
ddlp_dir = diffusion_config['ddlp_dir']
ddlp_ckpt = diffusion_config['ddlp_ckpt']
ddlp_conf = os.path.join(ddlp_dir, 'hparams.json')
ddlp_config = get_config(ddlp_conf)
# load model
image_size = ddlp_config['image_size']
ch = ddlp_config['ch']
enc_channels = ddlp_config['enc_channels']
prior_channels = ddlp_config['prior_channels']
use_correlation_heatmaps = ddlp_config['use_correlation_heatmaps']
enable_enc_attn = ddlp_config['enable_enc_attn']
filtering_heuristic = ddlp_config['filtering_heuristic']
animation_fps = ddlp_config["animation_fps"]
model = ObjectDynamicsDLP(cdim=ch, enc_channels=enc_channels, prior_channels=prior_channels,
image_size=image_size, n_kp=ddlp_config['n_kp'],
learned_feature_dim=ddlp_config['learned_feature_dim'],
pad_mode=ddlp_config['pad_mode'],
sigma=ddlp_config['sigma'],
dropout=ddlp_config['dropout'], patch_size=ddlp_config['patch_size'],
n_kp_enc=ddlp_config['n_kp_enc'],
n_kp_prior=ddlp_config['n_kp_prior'], kp_range=ddlp_config['kp_range'],
kp_activation=ddlp_config['kp_activation'],
anchor_s=ddlp_config['anchor_s'],
use_resblock=ddlp_config['use_resblock'],
timestep_horizon=ddlp_config['timestep_horizon'],
predict_delta=ddlp_config['predict_delta'],
scale_std=ddlp_config['scale_std'],
offset_std=ddlp_config['offset_std'], obj_on_alpha=ddlp_config['obj_on_alpha'],
obj_on_beta=ddlp_config['obj_on_beta'], pint_heads=ddlp_config['pint_heads'],
pint_layers=ddlp_config['pint_layers'], pint_dim=ddlp_config['pint_dim'],
use_correlation_heatmaps=use_correlation_heatmaps,
enable_enc_attn=enable_enc_attn, filtering_heuristic=filtering_heuristic).to(device)
model.load_state_dict(torch.load(ddlp_ckpt, map_location=device))
model.eval()
model.requires_grad_(False)
print(f"loaded ddlp model from {ddlp_ckpt}")
features_dim = 2 + 2 + 1 + 1 + ddlp_config['learned_feature_dim']
# features: xy, scale_xy, depth, obj_on, particle features
# total particles: n_kp + 1 for bg
ddpm_feat_dim = features_dim
denoiser_model = PINTDenoiser(features_dim, hidden_dim=ddlp_config['pint_dim'],
projection_dim=ddlp_config['pint_dim'],
n_head=ddlp_config['pint_heads'], n_layer=ddlp_config['pint_layers'],
block_size=diffuse_frames, dropout=0.1,
predict_delta=False, positional_bias=True, max_particles=ddlp_config['n_kp_enc'] + 1,
self_condition=False,
learned_sinusoidal_cond=False, random_fourier_features=False,
learned_sinusoidal_dim=16).to(device)
diffusion = GaussianDiffusionPINT(
denoiser_model,
seq_length=diffuse_frames,
timesteps=diffusion_num_steps, # number of steps
sampling_timesteps=diffusion_num_steps,
loss_type=loss_type, # L1 or L2
objective='pred_x0',
).to(device)
particle_normalizer = ParticleNormalization(diffusion_config, mode=particle_norm).to(device)
result_dir = diffusion_config.get('result_dir')
if result_dir is None:
run_name = f'{ds}_diffuse_ddlp'
result_dir = prepare_logdir(run_name, src_dir='./')
diffusion_config['result_dir'] = result_dir
# make copy of configs
path_to_conf = os.path.join(result_dir, 'ddlp_hparams.json')
with open(path_to_conf, "w") as outfile:
json.dump(ddlp_config, outfile, indent=2)
path_to_conf = os.path.join(result_dir, 'diffusion_hparams.json')
with open(path_to_conf, "w") as outfile:
json.dump(diffusion_config, outfile, indent=2)
latent_stats_path = os.path.join(ddlp_dir, 'latent_stats.pth') # make a copy of latent stats just in case
latent_stats_path_target = os.path.join(result_dir, 'latent_stats.pth')
shutil.copy(latent_stats_path, latent_stats_path_target)
# expects input: [batch_size, feature_dim, seq_len]
trainer = TrainerDiffuseDDLP(
diffusion,
ddlp_model=model,
diffusion_config=diffusion_config,
particle_norm=particle_normalizer,
train_batch_size=batch_size,
train_lr=lr,
train_num_steps=train_num_steps, # total training steps
gradient_accumulate_every=1, # gradient accumulation steps
ema_decay=0.995, # exponential moving average decay
amp=False, # turn on mixed precision
seq_len=diffuse_frames,
save_and_sample_every=1000,
results_folder=result_dir, animation_fps=animation_fps
)
trainer.train()