-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_dlp_accelerate.py
764 lines (729 loc) · 43.6 KB
/
train_dlp_accelerate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
"""
Main training function for multi-GPU machines.
We use HuggingFace Accelerate: https://huggingface.co/docs/accelerate/index
1. Set visible GPUs under: `os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3"`
2. Set "num_processes": NUM_GPUS in `accel_conf.json`
Default hyper-parameters
+---------+--------------------------------+----------+-------------+---------------+---------+------------+------------+----------+---------------------+
| dataset | model (dec_bone) | n_kp_enc | n_kp_prior | rec_loss_func | beta_kl | kl_balance | patch_size | anchor_s | learned_feature_dim |
+---------+--------------------------------+----------+-------------+---------------+---------+------------+------------+----------+---------------------+
| celeb | masked (gauss_pointnetpp_feat) | 30 | 50 | vgg | 40 | 0.001 | 8 | 0.125 | 10 |
| traffic | object (gauss_pointnetpp) | 15 | 20 | vgg | 30 | 0.001 | 16 | 0.25 | 20 |
| clevrer | object (gauss_pointnetpp) | 10 | 20 | vgg | 40 | 0.001 | 16 | 0.25 | 5 |
| shapes | object (gauss_pointnetpp) | 8 | 15 | mse | 0.1 | 0.001 | 8 | 0.25 | 5 |
+---------+--------------------------------+----------+-------------+---------------+---------+------------+------------+----------+---------------------+
"""
# imports
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3" # "0, 1, 2, 3"
import numpy as np
import os
import matplotlib.pyplot as plt
from tqdm import tqdm
import matplotlib
import argparse
# torch
import torch
import torch.nn.functional as F
from utils.loss_functions import ChamferLossKL, calc_kl, calc_reconstruction_loss, VGGDistance
from torch.utils.data import DataLoader
import torchvision.utils as vutils
import torch.nn as nn
import torch.optim as optim
# modules
from models import KeyPointVAE
# datasets
from datasets.celeba_dataset import CelebAPrunedAligned_MAFLVal, evaluate_lin_reg_on_mafl
from datasets.traffic_ds import TrafficDataset
from datasets.clevrer_ds import CLEVRERDataset
from datasets.shapes_ds import generate_shape_dataset_torch
# util functions
from utils.util_func import plot_keypoints_on_image_batch, create_masks_fast, prepare_logdir, \
save_config, log_line, plot_bb_on_image_batch_from_masks_nms
from eval.eval_model import evaluate_validation_elbo
from accelerate import Accelerator, DistributedDataParallelKwargs
matplotlib.use("Agg")
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def train_dlp(ds="celeba", batch_size=16, lr=5e-4, kp_activation="none",
pad_mode='replicate', num_epochs=250, load_model=False, n_kp=8, recon_loss_type="mse",
use_logsoftmax=False, sigma=0.1, beta_kl=1.0, beta_rec=1.0, dropout=0.0, dec_bone="gauss",
patch_size=16, topk=15, n_kp_enc=20, eval_epoch_freq=5,
learned_feature_dim=0, n_kp_prior=100, weight_decay=0.0, kp_range=(0, 1),
run_prefix="", mask_threshold=0.2, use_tps=False, use_pairs=False, use_object_enc=True,
use_object_dec=False, warmup_epoch=5, iou_thresh=0.2, anchor_s=0.25, learn_order=False,
kl_balance=0.1, exclusive_patches=False):
"""
ds: dataset name (str)
enc_channels: channels for the posterior CNN (takes in the whole image)
prior_channels: channels for prior CNN (takes in patches)
n_kp: number of kp to extract from each (!) patch
n_kp_prior: number of kp to filter from the set of prior kp (of size n_kp x num_patches)
n_kp_enc: number of posterior kp to be learned (this is the actual number of kp that will be learnt)
use_logsoftmax: for spatial-softmax, set True to use log-softmax for numerical stability
pad_mode: padding for the CNNs, 'zeros' or 'replicate' (default)
sigma: the prior std of the KP
dropout: dropout for the CNNs. We don't use it though...
dec_bone: decoder backbone -- "gauss_pointnetpp_feat": Masked Model, "gauss_pointnetpp": Object Model
patch_size: patch size for the prior KP proposals network (not to be confused with the glimpse size)
kp_range: the range of keypoints, can be [-1, 1] (default) or [0,1]
learned_feature_dim: the latent visual features dimensions extracted from glimpses.
kp_activation: the type of activation to apply on the keypoints: "tanh" for kp_range [-1, 1], "sigmoid" for [0, 1]
mask_threshold: activation threshold (>thresh -> 1, else 0) for the binary mask created from the Gaussian-maps.
anchor_s: defines the glimpse size as a ratio of image_size (e.g., 0.25 for image_size=128 -> glimpse_size=32)
learn_order: experimental feature to learn the order of keypoints - but it doesn't work yet.
use_object_enc: set True to use a separate encoder to encode visual features of glimpses.
use_object_dec: set True to use a separate decoder to decode glimpses (Object Model).
iou_thresh: intersection-over-union threshold for non-maximal suppression (nms) to filter bounding boxes
use_tps: set True to use a tps augmentation on the input image for datasets that support this option
use_pairs: for CelebA dataset, set True to use a tps-augmented image for the prior.
topk: the number top-k particles with the lowest variance (highest confidence) to filter for the plots.
warmup_epoch: (used for the Object Model) number of epochs where only the object decoder is trained.
recon_loss_type: tpe of pixel reconstruction loss ("mse", "vgg").
beta_rec: coefficient for the reconstruction loss (we use 1.0).
beta_kl: coefficient for the KL divergence term in the loss.
kl_balance: coefficient for the balance between the ChamferKL (for the KP)
and the standard KL (for the visual features),
kl_loss = beta_kl * (chamfer_kl + kl_balance * kl_features)
exclusive_patches: (mostly) enforce one particle pre object by masking up regions that were already encoded.
"""
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
# in conf: "num_processes": num_visible_gpus
# load data
if ds == "celeba":
image_size = 128
imwidth = 160
crop = 16
ch = 3
enc_channels = [32, 64, 128, 256]
prior_channels = (16, 32, 64)
root = '/mnt/data/tal/celebaa'
if use_tps:
import utils.tps as tps
if use_pairs:
warper = tps.Warper(H=imwidth, W=imwidth, im1_multiplier=0.1, im1_multiplier_aff=0.1)
else:
warper = tps.WarperSingle(H=imwidth, W=imwidth, warpsd_all=0.001, warpsd_subset=0.01, transsd=0.1,
scalesd=0.1, rotsd=5)
print('using tps augmentation')
else:
warper = None
dataset = CelebAPrunedAligned_MAFLVal(root=root, train=True, do_augmentations=False, imwidth=imwidth, crop=crop,
pair_warper=warper)
milestones = (50, 80, 100)
elif ds == "traffic":
image_size = 128
ch = 3
enc_channels = [32, 64, 128, 256]
prior_channels = (16, 32, 64)
root = '/mnt/data/tal/traffic_dataset/img128np_fs3.npy'
mode = 'single'
dataset = TrafficDataset(path_to_npy=root, image_size=image_size, mode=mode, train=True)
milestones = (50, 80, 100)
elif ds == 'clevrer':
image_size = 128
ch = 3
enc_channels = [32, 64, 128, 256]
prior_channels = (16, 32, 64)
root = '/mnt/data/tal/clevrer/clevrer_img128np_fs3_train.npy'
# root = '/media/newhd/data/clevrer/valid/clevrer_img128np_fs3_valid.npy'
mode = 'single'
dataset = CLEVRERDataset(path_to_npy=root, image_size=image_size, mode=mode, train=True)
milestones = (30, 60, 100)
elif ds == "shapes":
image_size = 64
ch = 3
enc_channels = [32, 64, 128]
prior_channels = (16, 32, 64)
print('generating random shapes dataset')
dataset = generate_shape_dataset_torch(num_images=20_000)
milestones = (20, 40, 80)
else:
raise NotImplementedError
hparams = {'ds': ds, 'batch_size': batch_size, 'lr': lr, 'kp_activation': kp_activation, 'pad_mode': pad_mode,
'num_epochs': num_epochs, 'n_kp': n_kp, 'recon_loss_type': recon_loss_type,
'use_logsoftmax': use_logsoftmax, 'sigma': sigma, 'beta_kl': beta_kl, 'beta_rec': beta_rec,
'dec_bone': dec_bone, 'patch_size': patch_size, 'topk': topk, 'n_kp_enc': n_kp_enc,
'eval_epoch_freq': eval_epoch_freq, 'learned_feature_dim': learned_feature_dim,
'n_kp_prior': n_kp_prior, 'weight_decay': weight_decay, 'kp_range': kp_range,
'run_prefix': run_prefix, 'mask_threshold': mask_threshold, 'use_tps': use_tps, 'use_pairs': use_pairs,
'use_object_enc': use_object_enc, 'use_object_dec': use_object_dec, 'warmup_epoch': warmup_epoch,
'iou_thresh': iou_thresh, 'anchor_s': anchor_s, 'learn_order': learn_order, 'kl_balance': kl_balance,
'milestones': milestones, 'image_size': image_size, 'enc_channels': enc_channels,
'prior_channels': prior_channels, 'exclusive_patches': exclusive_patches}
dataloader = DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=0, pin_memory=True,
drop_last=True)
# model
model = KeyPointVAE(cdim=ch, enc_channels=enc_channels, prior_channels=prior_channels,
image_size=image_size, n_kp=n_kp, learned_feature_dim=learned_feature_dim,
use_logsoftmax=use_logsoftmax, pad_mode=pad_mode, sigma=sigma,
dropout=dropout, dec_bone=dec_bone, patch_size=patch_size, n_kp_enc=n_kp_enc,
n_kp_prior=n_kp_prior, kp_range=kp_range, kp_activation=kp_activation,
mask_threshold=mask_threshold, use_object_enc=use_object_enc, use_object_dec=use_object_dec,
anchor_s=anchor_s, learn_order=learn_order, exclusive_patches=exclusive_patches)
logvar_p = torch.log(torch.tensor(sigma ** 2)).to(accelerator.device) # logvar of the constant std -> for the kl
# prepare saving location
run_name = f'{ds}_dlp_{dec_bone}' + run_prefix
log_dir = prepare_logdir(runname=run_name, src_dir='./')
fig_dir = os.path.join(log_dir, 'figures')
save_dir = os.path.join(log_dir, 'saves')
save_config(log_dir, hparams)
kl_loss_func = ChamferLossKL(use_reverse_kl=False)
if recon_loss_type == "vgg":
recon_loss_func = VGGDistance(device=accelerator.device)
else:
recon_loss_func = calc_reconstruction_loss
betas = (0.9, 0.999)
eps = 1e-4
optimizer_e = optim.Adam(model.get_parameters(encoder=True, prior=True, decoder=False), lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
optimizer_d = optim.Adam(model.get_parameters(encoder=False, prior=False, decoder=True), lr=lr, betas=betas,
eps=eps, weight_decay=weight_decay)
# convert BatchNorm to SyncBatchNorm
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model, optimizer_e, optimizer_d, dataloader = accelerator.prepare(model, optimizer_e, optimizer_d, dataloader)
scheduler_e = optim.lr_scheduler.MultiStepLR(optimizer_e, milestones=milestones, gamma=0.1)
scheduler_d = optim.lr_scheduler.MultiStepLR(optimizer_d, milestones=milestones, gamma=0.1)
if load_model:
try:
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.load_state_dict(
torch.load(os.path.join(save_dir, f'{ds}_dlp_{dec_bone}.pth'),
map_location=accelerator.device))
print("loaded model from checkpoint")
except:
print("model checkpoint not found")
losses = []
losses_rec = []
losses_kl = []
losses_kl_kp = []
losses_kl_feat = []
linreg_error = best_linreg_error = 1.0
best_linreg_epoch = 0
linreg_logvar_error = best_linreg_logvar_error = 1.0
best_linreg_logvar_epoch = 0
linreg_features_error = best_linreg_features_error = 1.0
best_linreg_features_epoch = 0
linreg_errors = []
linreg_logvar_errors = []
linreg_features_errors = []
valid_loss = best_valid_loss = 1e8
valid_losses = []
best_valid_epoch = 0
for epoch in range(num_epochs):
model.train()
batch_losses = []
batch_losses_rec = []
batch_losses_kl = []
batch_losses_kl_kp = []
batch_losses_kl_feat = []
pbar = tqdm(iterable=dataloader, disable=not accelerator.is_local_main_process)
for batch in pbar:
if ds == 'playground':
prev_obs, obs = batch[0][:, 0], batch[0][:, 1]
# prev_obs, obs = prev_obs.to(device), obs.to(device)
x = prev_obs.to(accelerator.device)
x[:, 1][x[:, 1] == 0.0] = 0.4
x_prior = x
elif ds == 'celeba':
if len(batch['data'].shape) == 5:
x_prior = batch['data'][:, 0].to(accelerator.device)
x = batch['data'][:, 1].to(accelerator.device)
else:
x = batch['data'].to(accelerator.device)
x_prior = x
elif ds == 'replay_buffer':
x = batch[0].to(accelerator.device)
x_prior = x
elif ds == 'traffic':
if mode == 'single':
x = batch.to(accelerator.device)
# x = normalize(x)
x_prior = x
else:
x = batch[0].to(accelerator.device)
# x = normalize(x)
x_prior = batch[1].to(accelerator.device)
# x_prior = normalize(x_prior)
elif ds == 'bair':
x = batch[:, 1].to(accelerator.device)
x_prior = batch[:, 0].to(accelerator.device)
elif ds == 'clevrer':
if mode == 'single':
x = batch.to(accelerator.device)
x_prior = x
else:
x = batch[0].to(accelerator.device)
x_prior = batch[1].to(accelerator.device)
else:
x = batch
x_prior = x
batch_size = x.shape[0]
# forward pass
use_stg = False
noisy_masks = (epoch < 5 * warmup_epoch)
model_output = model(x, x_prior=x_prior, warmup=(epoch < warmup_epoch), stg=use_stg,
noisy_masks=noisy_masks)
mu_p = model_output['kp_p']
gmap = model_output['gmap']
mu = model_output['mu']
logvar = model_output['logvar']
rec_x = model_output['rec']
mu_features = model_output['mu_features']
logvar_features = model_output['logvar_features']
# object stuff
dec_objects_original = model_output['dec_objects_original']
cropped_objects_original = model_output['cropped_objects_original']
obj_on = model_output['obj_on'] # [batch_size, n_kp]
# reconstruction error
if use_object_dec and dec_objects_original is not None and epoch < warmup_epoch:
if recon_loss_type == "vgg":
_, dec_objects_rgb = torch.split(dec_objects_original, [1, 3], dim=2)
dec_objects_rgb = dec_objects_rgb.reshape(-1, *dec_objects_rgb.shape[2:])
cropped_objects_original = cropped_objects_original.reshape(-1,
*cropped_objects_original.shape[2:])
if cropped_objects_original.shape[-1] < 32:
cropped_objects_original = F.interpolate(cropped_objects_original, size=32, mode='bilinear',
align_corners=False)
dec_objects_rgb = F.interpolate(dec_objects_rgb, size=32, mode='bilinear',
align_corners=False)
loss_rec_obj = recon_loss_func(cropped_objects_original, dec_objects_rgb, reduction="mean")
else:
_, dec_objects_rgb = torch.split(dec_objects_original, [1, 3], dim=2)
dec_objects_rgb = dec_objects_rgb.reshape(-1, *dec_objects_rgb.shape[2:])
cropped_objects_original = cropped_objects_original.clone().reshape(-1,
*cropped_objects_original.shape[
2:])
loss_rec_obj = calc_reconstruction_loss(cropped_objects_original, dec_objects_rgb,
loss_type='mse', reduction='mean')
loss_rec = loss_rec_obj + (0 * rec_x).mean() # + (0 * rec_x).mean() for distributed training
else:
if recon_loss_type == "vgg":
loss_rec = recon_loss_func(x, rec_x, reduction="mean")
else:
loss_rec = calc_reconstruction_loss(x, rec_x, loss_type='mse', reduction='mean')
# kl-divergence
logvar_kp = logvar_p.expand_as(mu_p)
# the final kp is the bg kp which is located in the center (so no need for it)
# to reproduce the results on celeba, use `mu_post = mu`, `logvar_post = logvar`
mu_post = mu[:, :-1]
logvar_post = logvar[:, :-1]
mu_prior = mu_p
logvar_prior = logvar_kp
loss_kl_kp = kl_loss_func(mu_preds=mu_post, logvar_preds=logvar_post, mu_gts=mu_prior,
logvar_gts=logvar_prior).mean()
if learned_feature_dim > 0:
loss_kl_feat = calc_kl(logvar_features.view(-1, logvar_features.shape[-1]),
mu_features.view(-1, mu_features.shape[-1]), reduce='none')
loss_kl_feat = loss_kl_feat.view(batch_size, n_kp_enc + 1).sum(1).mean()
else:
loss_kl_feat = torch.tensor(0.0, device=accelerator.device)
loss_kl = loss_kl_kp + kl_balance * loss_kl_feat
loss = beta_rec * loss_rec + beta_kl * loss_kl
# backprop
optimizer_e.zero_grad()
optimizer_d.zero_grad()
accelerator.backward(loss)
optimizer_e.step()
optimizer_d.step()
# log
batch_losses.append(loss.data.cpu().item())
batch_losses_rec.append(loss_rec.data.cpu().item())
batch_losses_kl.append(loss_kl.data.cpu().item())
batch_losses_kl_kp.append(loss_kl_kp.data.cpu().item())
batch_losses_kl_feat.append(loss_kl_feat.data.cpu().item())
# progress bar
if use_object_dec and epoch < warmup_epoch:
pbar.set_description_str(f'epoch #{epoch} (warmup)')
elif use_object_dec and noisy_masks:
pbar.set_description_str(f'epoch #{epoch} (noisy masks)')
else:
pbar.set_description_str(f'epoch #{epoch}')
# pbar.set_description_str('epoch #{}'.format(epoch))
pbar.set_postfix(loss=loss.data.cpu().item(), rec=loss_rec.data.cpu().item(),
kl=loss_kl.data.cpu().item())
pbar.close()
losses.append(np.mean(batch_losses))
losses_rec.append(np.mean(batch_losses_rec))
losses_kl.append(np.mean(batch_losses_kl))
losses_kl_kp.append(np.mean(batch_losses_kl_kp))
losses_kl_feat.append(np.mean(batch_losses_kl_feat))
# keep track of bounding box scores to set a hard threshold (as bb scores are not normalized)
# epoch_bb_scores = torch.cat(batch_bb_scores, dim=0)
# bb_mean_score = epoch_bb_scores.mean().data.cpu().item()
# bb_mean_scores.append(bb_mean_score)
# schedulers
scheduler_e.step()
scheduler_d.step()
# epoch summary
log_str = f'epoch {epoch} summary for dec backbone: {dec_bone}\n'
log_str += f'loss: {losses[-1]:.3f}, rec: {losses_rec[-1]:.3f}, kl: {losses_kl[-1]:.3f}\n'
log_str += f'kl_balance: {kl_balance:.3f}, kl_kp: {losses_kl_kp[-1]:.3f}, kl_feat: {losses_kl_feat[-1]:.3f}\n'
log_str += f'mu max: {mu.max()}, mu min: {mu.min()}\n'
if ds != 'celeba':
log_str += f'val loss (freq: {eval_epoch_freq}): {valid_loss:.3f},' \
f' best: {best_valid_loss:.3f} @ epoch: {best_valid_epoch}\n'
if obj_on is not None:
log_str += f'obj_on max: {obj_on.max()}, obj_on min: {obj_on.min()}\n'
accelerator.print(log_str)
if accelerator.is_main_process:
log_line(log_dir, log_str)
# wait an unwrap model
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if epoch % eval_epoch_freq == 0 or epoch == num_epochs - 1:
if accelerator.is_main_process:
max_imgs = 8
img_with_kp = plot_keypoints_on_image_batch(mu[:, :-1].clamp(min=kp_range[0], max=kp_range[1]), x,
radius=3, thickness=1, max_imgs=max_imgs, kp_range=kp_range)
img_with_kp_p = plot_keypoints_on_image_batch(mu_p, x_prior, radius=3, thickness=1, max_imgs=max_imgs,
kp_range=kp_range)
# top-k
with torch.no_grad():
logvar_sum = logvar[:, :-1].sum(-1)
logvar_topk = torch.topk(logvar_sum, k=topk, dim=-1, largest=False)
indices = logvar_topk[1] # [batch_size, topk]
batch_indices = torch.arange(mu.shape[0]).view(-1, 1).to(mu.device)
topk_kp = mu[batch_indices, indices]
# bounding boxes
masks = create_masks_fast(mu[:, :-1].detach(), anchor_s=unwrapped_model.anchor_s,
feature_dim=x.shape[-1])
masks = torch.where(masks < mask_threshold, 0.0, 1.0)
bb_scores = -1 * logvar_sum
hard_threshold = bb_scores.mean()
if use_object_dec:
img_with_masks_nms, nms_ind = plot_bb_on_image_batch_from_masks_nms(masks, x, scores=bb_scores,
iou_thresh=iou_thresh,
thickness=1, max_imgs=max_imgs,
hard_thresh=hard_threshold)
# hard_thresh: a general threshold for bb scores (set None to not use it)
bb_str = f'bb scores: max: {bb_scores.max():.2f}, min: {bb_scores.min():.2f},' \
f' mean: {bb_scores.mean():.2f}\n'
accelerator.print(bb_str)
log_line(log_dir, bb_str)
img_with_kp_topk = plot_keypoints_on_image_batch(topk_kp.clamp(min=kp_range[0], max=kp_range[1]), x,
radius=3, thickness=1, max_imgs=max_imgs,
kp_range=kp_range)
if use_object_dec and dec_objects_original is not None:
dec_objects = model_output['dec_objects']
vutils.save_image(torch.cat([x[:max_imgs, -3:], img_with_kp[:max_imgs, -3:].to(accelerator.device),
rec_x[:max_imgs, -3:],
img_with_kp_p[:max_imgs, -3:].to(accelerator.device),
img_with_kp_topk[:max_imgs, -3:].to(accelerator.device),
dec_objects[:max_imgs, -3:],
img_with_masks_nms[:max_imgs, -3:].to(accelerator.device)],
dim=0).data.cpu(), '{}/image_{}.jpg'.format(fig_dir, epoch),
nrow=8, pad_value=1)
with torch.no_grad():
_, dec_objects_rgb = torch.split(dec_objects_original, [1, 3], dim=2)
dec_objects_rgb = dec_objects_rgb.reshape(-1, *dec_objects_rgb.shape[2:])
cropped_objects_original = cropped_objects_original.clone().reshape(-1, 3,
cropped_objects_original.shape[
-1],
cropped_objects_original.shape[
-1])
if cropped_objects_original.shape[-1] != dec_objects_rgb.shape[-1]:
cropped_objects_original = F.interpolate(cropped_objects_original,
size=dec_objects_rgb.shape[-1],
align_corners=False, mode='bilinear')
vutils.save_image(
torch.cat([cropped_objects_original[:max_imgs * 2, -3:], dec_objects_rgb[:max_imgs * 2, -3:]],
dim=0).data.cpu(), '{}/image_obj_{}.jpg'.format(fig_dir, epoch),
nrow=8, pad_value=1)
else:
vutils.save_image(torch.cat([x[:max_imgs, -3:], img_with_kp[:max_imgs, -3:].to(accelerator.device),
rec_x[:max_imgs, -3:],
img_with_kp_p[:max_imgs, -3:].to(accelerator.device),
img_with_kp_topk[:max_imgs, -3:].to(accelerator.device)],
dim=0).data.cpu(), '{}/image_{}.jpg'.format(fig_dir, epoch),
nrow=8, pad_value=1)
accelerator.save(unwrapped_model.state_dict(),
os.path.join(save_dir, f'{ds}_dlp_{dec_bone}{run_prefix}.pth'))
eval_model = unwrapped_model
if ds == "celeba":
if accelerator.is_main_process:
# evaluate supervised linear regression errors
accelerator.print("evaluating linear regression error...")
linreg_error_train, linreg_error = evaluate_lin_reg_on_mafl(eval_model, root=root, use_logvar=False,
batch_size=100,
device=accelerator.device,
img_size=image_size,
fig_dir=fig_dir,
epoch=epoch)
if best_linreg_error > linreg_error:
best_linreg_error = linreg_error
best_linreg_epoch = epoch
linreg_logvar_error_train, linreg_logvar_error = evaluate_lin_reg_on_mafl(eval_model, root=root,
use_logvar=True,
batch_size=100,
device=accelerator.device,
img_size=image_size,
fig_dir=fig_dir,
epoch=epoch)
if best_linreg_logvar_error > linreg_logvar_error:
best_linreg_logvar_error = linreg_logvar_error
best_linreg_logvar_epoch = epoch
if learned_feature_dim > 0:
linreg_features_error_train, linreg_features_error = evaluate_lin_reg_on_mafl(eval_model,
root=root,
use_logvar=True,
batch_size=100,
device=accelerator.device,
img_size=image_size,
fig_dir=fig_dir,
epoch=epoch,
use_features=True)
if best_linreg_features_error > linreg_features_error:
best_linreg_features_error = linreg_features_error
best_linreg_features_epoch = epoch
accelerator.save(unwrapped_model.state_dict(),
os.path.join(save_dir,
f'{ds}_dlp_{dec_bone}{run_prefix}_best.pth'))
linreg_str = f'eval epoch {epoch}: error: {linreg_error * 100:.4f}%,' \
f' error with logvar: {linreg_logvar_error * 100:.4f},' \
f' train logvar error: {linreg_logvar_error_train * 100:.4f}%\n'
# accelerator.print(
# f'eval epoch {epoch}: error: {linreg_error * 100:.4f}%,'
# f' error with logvar: {linreg_logvar_error * 100:.4f}%'
# f' train logvar error: {linreg_logvar_error_train * 100:.4f}')
if learned_feature_dim > 0 and "pointnet" in dec_bone:
linreg_str += f'error with features: {linreg_features_error * 100:.4f}%,' \
f' train logvar error: {linreg_features_error_train * 100:.4f}%\n'
# accelerator.print(f'error with features: {linreg_features_error * 100:.4f}% '
# f'train logvar error: {linreg_features_error_train * 100:.4f}%')
# accelerator.print(
# f'best error {best_linreg_epoch}: {best_linreg_error * 100:.4f}%,'
# f' error with logvar {best_linreg_logvar_epoch}: {best_linreg_logvar_error * 100:.4f}%')
linreg_str += f'best error {best_linreg_epoch}: {best_linreg_error * 100:.4f}%,' \
f' error with logvar {best_linreg_logvar_epoch}: {best_linreg_logvar_error * 100:.4f}%\n'
if learned_feature_dim > 0 and "pointnet" in dec_bone:
linreg_str += f'error with features' \
f' {best_linreg_features_epoch}: {best_linreg_features_error * 100:.4f}%\n'
# accelerator.print(
# f'error with features {best_linreg_features_epoch}: {best_linreg_features_error * 100:.4f}%')
accelerator.print(linreg_str)
log_line(log_dir, linreg_str)
else:
accelerator.print("validation step...")
valid_loss = evaluate_validation_elbo(eval_model, ds, epoch, batch_size=batch_size,
recon_loss_type=recon_loss_type, device=accelerator.device,
save_image=True, fig_dir=fig_dir, topk=topk,
recon_loss_func=recon_loss_func, beta_rec=beta_rec,
beta_kl=beta_kl, kl_balance=kl_balance, accelerator=accelerator)
if best_valid_loss > valid_loss:
best_valid_loss = valid_loss
best_valid_epoch = epoch
accelerator.save(unwrapped_model.state_dict(),
os.path.join(save_dir, f'{ds}_dlp_{dec_bone}{run_prefix}_best.pth'))
linreg_errors.append(linreg_error * 100)
linreg_logvar_errors.append(linreg_logvar_error * 100)
linreg_features_errors.append(linreg_features_error * 100)
valid_losses.append(valid_loss)
# plot graphs
if epoch > 0 and accelerator.is_main_process:
num_plots = 4
fig = plt.figure()
ax = fig.add_subplot(num_plots, 1, 1)
ax.plot(np.arange(len(losses[1:])), losses[1:], label="loss")
ax.set_title(run_name)
ax.legend()
ax = fig.add_subplot(num_plots, 1, 2)
ax.plot(np.arange(len(losses_kl[1:])), losses_kl[1:], label="kl", color='red')
if learned_feature_dim > 0:
ax.plot(np.arange(len(losses_kl_kp[1:])), losses_kl_kp[1:], label="kl_kp", color='cyan')
ax.plot(np.arange(len(losses_kl_feat[1:])), losses_kl_feat[1:], label="kl_feat", color='green')
ax.legend()
ax = fig.add_subplot(num_plots, 1, 3)
ax.plot(np.arange(len(losses_rec[1:])), losses_rec[1:], label="rec", color='green')
ax.legend()
if ds == 'celeba':
ax = fig.add_subplot(num_plots, 1, 4)
ax.plot(np.arange(len(linreg_errors[1:])), linreg_errors[1:], label="linreg_err %")
ax.plot(np.arange(len(linreg_logvar_errors[1:])), linreg_logvar_errors[1:], label="linreg_v_err %")
if learned_feature_dim > 0:
ax.plot(np.arange(len(linreg_features_errors[1:])), linreg_features_errors[1:],
label="linreg_f_err %")
ax.legend()
else:
ax = fig.add_subplot(num_plots, 1, 4)
ax.plot(np.arange(len(valid_losses[1:])), valid_losses[1:], label="valid_loss", color='magenta')
ax.legend()
plt.tight_layout()
plt.savefig(f'{fig_dir}/{run_name}_graph.jpg')
plt.close('all')
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
return unwrapped_model
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="DLP Single-GPU Training")
parser.add_argument("-d", "--dataset", type=str, default='celeba',
help="dataset of to train the model on: ['celeba', 'traffic', 'clevrer', 'shapes']")
parser.add_argument("-o", "--override", action='store_true',
help="set True to override default hyper-parameters via command line")
parser.add_argument("-l", "--lr", type=float, help="learning rate", default=2e-4)
parser.add_argument("-b", "--batch_size", type=int, help="batch size", default=32)
parser.add_argument("-n", "--num_epochs", type=int, help="total number of epochs to run", default=100)
parser.add_argument("-e", "--eval_freq", type=int, help="evaluation epoch frequency", default=2)
parser.add_argument("-s", "--sigma", type=float, help="the prior std of the KP", default=0.1)
parser.add_argument("-p", "--prefix", type=str, help="string prefix for logging", default="")
parser.add_argument("-r", "--beta_rec", type=float, help="beta coefficient for the reconstruction loss",
default=1.0)
parser.add_argument("-k", "--beta_kl", type=float, help="beta coefficient for the kl divergence",
default=1.0)
parser.add_argument("-c", "--kl_balance", type=float,
help="coefficient for the balance between the ChamferKL (for the KP) and the standard KL",
default=0.001)
parser.add_argument("-v", "--rec_loss_function", type=str, help="type of reconstruction loss: 'mse', 'vgg'",
default="mse")
parser.add_argument("--n_kp_enc", type=int, help="number of posterior kp to be learned", default=30)
parser.add_argument("--n_kp_prior", type=int, help="number of kp to filter from the set of prior kp", default=50)
parser.add_argument("--dec_bone", type=str,
help="decoder backbone:'gauss_pointnetpp_feat': Masked Model, 'gauss_pointnetpp': Object Model",
default="gauss_pointnetpp")
parser.add_argument("--patch_size", type=int,
help="patch size for the prior KP proposals network (not to be confused with the glimpse size)",
default=8)
parser.add_argument("--learned_feature_dim", type=int,
help="the latent visual features dimensions extracted from glimpses",
default=10)
parser.add_argument("--use_object_enc", action='store_true',
help="set True to use a separate encoder to encode visual features of glimpses")
parser.add_argument("--use_object_dec", action='store_true',
help="set True to use a separate decoder to decode glimpses (Object Model)")
parser.add_argument("--warmup_epoch", type=int,
help="number of epochs where only the object decoder is trained",
default=2)
parser.add_argument("--anchor_s", type=float,
help="defines the glimpse size as a ratio of image_size", default=0.25)
parser.add_argument("--exclusive_patches", action='store_true',
help="set True to enable non-overlapping object patches")
args = parser.parse_args()
# default hyper-parameters
lr = 2e-4
batch_size = 32
num_epochs = 100
load_model = False
eval_epoch_freq = 2
n_kp = 1 # num kp per patch
mask_threshold = 0.2 # mask threshold for the features from the encoder
kp_range = (-1, 1)
weight_decay = 0.0
run_prefix = ""
learn_order = False
use_logsoftmax = False
pad_mode = 'replicate'
sigma = 0.1 # default sigma for the gaussian maps
dropout = 0.0
kp_activation = "tanh"
# dataset specific
ds = args.dataset
if args.dataset == 'celeb':
beta_kl = 40.0
beta_rec = 1.0
n_kp_enc = 30 # total kp to output from the encoder / filter from prior
n_kp_prior = 50
patch_size = 8
learned_feature_dim = 10 # additional features than x,y for each kp
dec_bone = "gauss_pointnetpp_feat"
topk = min(10, n_kp_enc) # display top-10 kp with smallest variance
recon_loss_type = "vgg"
use_tps = True
use_pairs = True
use_object_enc = True # separate object encoder
use_object_dec = False # separate object decoder
warmup_epoch = 0
anchor_s = 0.125
kl_balance = 0.001
exclusive_patches = False
elif args.dataset == 'traffic':
beta_kl = 30.0
beta_rec = 1.0
n_kp_enc = 15 # total kp to output from the encoder / filter from prior
n_kp_prior = 20
patch_size = 16
learned_feature_dim = 10 # additional features than x,y for each kp
dec_bone = "gauss_pointnetpp"
topk = min(10, n_kp_enc) # display top-10 kp with smallest variance
recon_loss_type = "vgg"
use_tps = False
use_pairs = False
use_object_enc = True # separate object encoder
use_object_dec = True # separate object decoder
warmup_epoch = 2
anchor_s = 0.25
kl_balance = 0.001
exclusive_patches = False
elif args.dataset == 'clevrer':
beta_kl = 40.0
beta_rec = 1.0
n_kp_enc = 10 # total kp to output from the encoder / filter from prior
n_kp_prior = 20
patch_size = 16
learned_feature_dim = 5 # additional features than x,y for each kp
dec_bone = "gauss_pointnetpp"
topk = min(10, n_kp_enc) # display top-10 kp with smallest variance
recon_loss_type = "vgg"
use_tps = False
use_pairs = False
use_object_enc = True # separate object encoder
use_object_dec = True # separate object decoder
warmup_epoch = 1
anchor_s = 0.25
kl_balance = 0.001
exclusive_patches = False
elif args.dataset == 'shapes':
beta_kl = 0.01
beta_rec = 1.0
n_kp_enc = 8 # total kp to output from the encoder / filter from prior
n_kp_prior = 15
patch_size = 8
learned_feature_dim = 5 # additional features than x,y for each kp
dec_bone = "gauss_pointnetpp"
topk = min(10, n_kp_enc) # display top-10 kp with smallest variance
recon_loss_type = "mse"
use_tps = False
use_pairs = False
use_object_enc = True # separate object encoder
use_object_dec = True # separate object decoder
warmup_epoch = 2
anchor_s = 0.25
kl_balance = 0.001
exclusive_patches = True
# override manually
lr = 1e-3
batch_size = 64
else:
raise NotImplementedError("unrecognized dataset, please implement it and add it to the trian script")
override_hp = args.override
if override_hp:
lr = args.lr
batch_size = args.batch_size
num_epochs = args.num_epochs
eval_epoch_freq = args.eval_freq
run_prefix = args.prefix
sigma = args.sigma
beta_kl = args.beta_kl
beta_rec = args.beta_rec
n_kp_enc = args.n_kp_enc
n_kp_prior = args.n_kp_prior
patch_size = args.patch_size
learned_feature_dim = args.learned_feature_dim
dec_bone = args.dec_bone
recon_loss_type = args.rec_loss_function
use_object_enc = args.use_object_enc
use_object_dec = args.use_object_dec
warmup_epoch = args.warmup_epoch
anchor_s = args.anchor_s
kl_balance = args.kl_balance
exclusive_patches = args.exclusive_patches
model = train_dlp(ds=ds, batch_size=batch_size, lr=lr,
num_epochs=num_epochs, kp_activation=kp_activation,
load_model=load_model, n_kp=n_kp, use_logsoftmax=use_logsoftmax, pad_mode=pad_mode,
sigma=sigma, beta_kl=beta_kl, beta_rec=beta_rec, dropout=dropout, dec_bone=dec_bone,
kp_range=kp_range, learned_feature_dim=learned_feature_dim, weight_decay=weight_decay,
recon_loss_type=recon_loss_type, patch_size=patch_size, topk=topk, n_kp_enc=n_kp_enc,
eval_epoch_freq=eval_epoch_freq, n_kp_prior=n_kp_prior, run_prefix=run_prefix,
mask_threshold=mask_threshold, use_tps=use_tps, use_pairs=use_pairs, anchor_s=anchor_s,
use_object_enc=use_object_enc, use_object_dec=use_object_dec, exclusive_patches=exclusive_patches,
warmup_epoch=warmup_epoch, learn_order=learn_order, kl_balance=kl_balance)