forked from kentonl/e2e-coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ensemble.py
executable file
·108 lines (88 loc) · 4.33 KB
/
test_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/env python
import os
import sys
sys.path.append(os.getcwd())
import collections
import operator
import numpy as np
import tensorflow as tf
import coref_model as cm
import util
import conll
import metrics
if __name__ == "__main__":
if "GPU" in os.environ:
util.set_gpus(int(os.environ["GPU"]))
else:
util.set_gpus()
names = sys.argv[1:]
print "Ensembling models from {}.".format(names)
configs = util.get_config("experiments.conf")
main_config = configs[names[0]]
model = cm.CorefModel(main_config)
model.load_eval_data()
saver = tf.train.Saver()
with tf.Session() as session:
all_mention_scores = collections.defaultdict(list)
for name in names:
config = configs[name]
log_dir = os.path.join(config["log_root"], name)
checkpoint_path = os.path.join(log_dir, "model.max.ckpt")
print "Computing mention scores for {}".format(checkpoint_path)
saver.restore(session, checkpoint_path)
for example_num, (tensorized_example, example) in enumerate(model.eval_data):
feed_dict = {i:t for i,t in zip(model.input_tensors, tensorized_example)}
mention_scores = session.run(model.predictions[2], feed_dict=feed_dict)
all_mention_scores[example["doc_key"]].append(mention_scores)
if example_num % 10 == 0:
print "Computed {}/{} examples.".format(example_num + 1, len(model.eval_data))
mean_mention_scores = { doc_key : np.mean(s, 0) for doc_key, s in all_mention_scores.items() }
all_antecedent_scores = collections.defaultdict(list)
mention_start_dict = {}
mention_end_dict = {}
antecedents_dict = {}
for name in names:
config = configs[name]
log_dir = os.path.join(config["log_root"], name)
checkpoint_path = os.path.join(log_dir, "model.max.ckpt")
print "Computing antecedent scores for {}".format(checkpoint_path)
saver.restore(session, checkpoint_path)
for example_num, (tensorized_example, example) in enumerate(model.eval_data):
doc_key = example["doc_key"]
feed_dict = {i:t for i,t in zip(model.input_tensors, tensorized_example)}
feed_dict[model.predictions[2]] = mean_mention_scores[doc_key]
mention_starts, mention_ends, antecedents, antecedent_scores = session.run(model.predictions[3:7], feed_dict=feed_dict)
if doc_key in mention_start_dict:
assert (mention_starts == mention_start_dict[doc_key]).all()
assert (mention_ends == mention_end_dict[doc_key]).all()
assert (antecedents == antecedents_dict[doc_key]).all()
else:
mention_start_dict[doc_key] = mention_starts
mention_end_dict[doc_key] = mention_ends
antecedents_dict[doc_key] = antecedents
all_antecedent_scores[doc_key].append(antecedent_scores)
if example_num % 10 == 0:
print "Computed {}/{} examples.".format(example_num + 1, len(model.eval_data))
mean_antecedent_scores = { doc_key : np.mean(s, 0) for doc_key, s in all_antecedent_scores.items() }
merged_predictions = {}
coref_evaluator = metrics.CorefEvaluator()
for example_num, (tensorized_example, example) in enumerate(model.eval_data):
doc_key = example["doc_key"]
mention_starts = mention_start_dict[doc_key]
mention_ends = mention_end_dict[doc_key]
antecedents = antecedents_dict[doc_key]
antecedent_scores = mean_antecedent_scores[doc_key]
predicted_antecedents = []
for i, index in enumerate(np.argmax(antecedent_scores, axis=1) - 1):
if index < 0:
predicted_antecedents.append(-1)
else:
predicted_antecedents.append(antecedents[i, index])
merged_predictions[doc_key] = model.evaluate_coref(mention_starts, mention_ends, predicted_antecedents, example["clusters"], coref_evaluator)
conll_results = conll.evaluate_conll(main_config["conll_eval_path"], merged_predictions, official_stdout=True)
average_f = sum(results["f"] for results in conll_results.values()) / len(conll_results)
average_r = sum(results["r"] for results in conll_results.values()) / len(conll_results)
average_p = sum(results["p"] for results in conll_results.values()) / len(conll_results)
print "Merged average F1 (conll): {:.2f}%".format(average_f)
print "Merged average Recall (conll): {:.2f}%".format(average_r)
print "Merged average Precision (conll): {:.2f}%".format(average_p)