-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSGA.py
134 lines (118 loc) · 4.13 KB
/
SGA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/python
#-*- coding: utf-8 -*-
from numpy import *
import matplotlib.pyplot as plt
import matplotlib.animation as ai
import numpy as np
import time
def loadData(): #文件读取函数
data=open('ex2data1.txt').readlines();
l=len(data) #mat为l*3的矩阵,元素都为0
mat=zeros((l,3))
index=0
xdata = ones((l,3)) #xdata为l*3的矩阵,元素都为1
for line in data:
line = line.strip().split(',') #去除多余字符
mat[index:,] = line[0:3] #得到一行数据
index +=1
xdata[:,1] = mat[:,0] #得到第一列数据
xdata[:,2] = mat[:,1] #得到第二列数据
return xdata,mat[:,2]
def sigmoid(z):
return 1.0/(1+exp(-z));
def cost(weight,x,y):
weight = np.matrix(weight)
x = np.matrix(x)
y = np.matrix(y)
first = np.multiply(-y,np.log(sigmoid(x*weight)))
second = np.multiply((1-y),np.log(1-sigmoid(x*weight)))
return np.sum((first-second)/len(x))
def prdict(weight,x,y):
l =len(x)
c = 0
for i in range(l):
u = x[i][0]*weight[0][0]+x[i][1]*weight[1][0]+x[i][2]*weight[2][0]
u = float(sigmoid(u))
if (y[i]==1 and u >0.5 ) or (y[i]==0 and u <0.5 ):
c+=1
i +=1
return float(c)/float(l)
def gradAscent(xArr,yArr):
xArr = mat(xArr)
yArr = mat(yArr).transpose()
maxCycles = 1000
m,n = shape(xArr)
alpha = 0.004
weights = zeros((n,1))
weights_history1 = []
weights_history2 = []
weights_history3 = []
cost_h = []
iters = []
i = 0
print "初始代价为:"
print cost(weights,xArr,yArr)
for k in range(maxCycles):
for j in range(m):
alpha = 1.3/(1.0+k+j)+0.0002
h = sigmoid(sum(xArr[j]*weights))
error = yArr[j] - h
error = float(error)
cost_h.append(float(cost(weights,xArr,yArr)))
weights_history1.append(float(weights[0][0]))
weights_history2.append(float(weights[1][0]))
weights_history3.append(float(weights[2][0]))
weights += alpha * xArr[j].transpose()*error
iters.append(i)
i+=1
print "最终代价为: "
print cost(weights,xArr,yArr)
return weights,weights_history1,weights_history2,weights_history3,iters,cost_h
def show(xArr,yArr,weights):
n = len(yArr)
dataArr = array(xArr)
xcord1 = [];ycord1 = []
xcord2 = [];ycord2 = []
x = arange(25,100,1)
y = (-weights[0]-weights[1]*x)/weights[2]
for i in range(n):
if int(yArr[i])==1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='r',marker='o',label='Admitted')
ax.scatter(xcord2,ycord2,s=30,c='g',marker='x',label='Not Admitted')
ax.plot(x,y)
plt.xlabel('Score1',size=25) # 横坐标
plt.ylabel('Score2',size=25) # 纵坐标
plt.title('Logistic',size=30) # 标题
plt.show()
def show1(weight1,weight2,weight3,iters,cost_h):
plt.figure(1)
plt.subplot(221)
plt.xlabel('isers',size=10)
plt.ylabel('weight1',size=10)
plt.plot(iters,weight1,'bo')
plt.subplot(222)
plt.xlabel('isers',size=10)
plt.ylabel('weight2',size=10)
plt.plot(iters,weight2,'bo')
plt.subplot(223)
plt.xlabel('isers',size=10)
plt.ylabel('weight3',size=10)
plt.plot(iters,weight3,'go')
plt.subplot(224)
plt.xlabel('isers',size=10)
plt.ylabel('cost',size=10)
plt.plot(iters,cost_h,'go')
plt.show()
xArr,yArr= loadData()
weight,weight1,weight2,weight3,iters,cost_h= gradAscent(xArr,yArr)
print "求得的参数为:"
print weight
print "某考生两次的考试成绩分别为45,85时,录取的概率为:"
print prdict(weight,xArr,yArr)
show(xArr,yArr,weight)
show1(weight1,weight2,weight3,iters,cost_h)