-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonMNIST_using_sklearn.py
764 lines (489 loc) · 21.3 KB
/
nonMNIST_using_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
# coding: utf-8
# In[1]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import sys
import tarfile
from IPython.display import display, Image
from sklearn.linear_model import LogisticRegression
from six.moves.urllib.request import urlretrieve
from six.moves import cPickle as pickle
get_ipython().run_line_magic('matplotlib', 'inline')
# In[4]:
url = 'https://commondatastorage.googleapis.com/books1000/'
last_percent_reported = None
data_root = '.' # Change me to store data elsewhere
def download_progress_hook(count, blockSize, totalSize):
"""A hook to report the progress of a download. This is mostly intended for users with
slow internet connections. Reports every 5% change in download progress.
"""
global last_percent_reported
percent = int(count * blockSize * 100 / totalSize)
if last_percent_reported != percent:
if percent % 5 == 0:
sys.stdout.write("%s%%" % percent)
sys.stdout.flush()
else:
sys.stdout.write(".")
sys.stdout.flush()
last_percent_reported = percent
def maybe_download(filename, expected_bytes, force=False):
"""Download a file if not present, and make sure it's the right size."""
dest_filename = os.path.join(data_root, filename)
if force or not os.path.exists(dest_filename):
print('Attempting to download:', filename)
filename, _ = urlretrieve(url + filename, dest_filename, reporthook=download_progress_hook)
print('\nDownload Complete!')
statinfo = os.stat(dest_filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', dest_filename)
else:
raise Exception(
'Failed to verify ' + dest_filename + '. Can you get to it with a browser?')
return dest_filename
train_filename = maybe_download('notMNIST_large.tar.gz', 247336696)
test_filename = maybe_download('notMNIST_small.tar.gz', 8458043)
# In[5]:
num_classes = 10
np.random.seed(133)
def maybe_extract(filename, force=False):
root = os.path.splitext(os.path.splitext(filename)[0])[0] # remove .tar.gz
if os.path.isdir(root) and not force:
# You may override by setting force=True.
print('%s already present - Skipping extraction of %s.' % (root, filename))
else:
print('Extracting data for %s. This may take a while. Please wait.' % root)
tar = tarfile.open(filename)
sys.stdout.flush()
tar.extractall(data_root)
tar.close()
data_folders = [
os.path.join(root, d) for d in sorted(os.listdir(root))
if os.path.isdir(os.path.join(root, d))]
if len(data_folders) != num_classes:
raise Exception(
'Expected %d folders, one per class. Found %d instead.' % (
num_classes, len(data_folders)))
print(data_folders)
return data_folders
train_folders = maybe_extract(train_filename)
test_folders = maybe_extract(test_filename)
# In[6]:
train_folders
# In[7]:
train_filename
# In[8]:
image_size = 28 # Pixel width and height.
pixel_depth = 255.0 # Number of levels per pixel.
def load_letter(folder, min_num_images):
"""Load the data for a single letter label."""
image_files = os.listdir(folder)
dataset = np.ndarray(shape=(len(image_files), image_size, image_size),
dtype=np.float32)
print(folder)
num_images = 0
for image in image_files:
image_file = os.path.join(folder, image)
try:
image_data = (imageio.imread(image_file).astype(float) -
pixel_depth / 2) / pixel_depth
if image_data.shape != (image_size, image_size):
raise Exception('Unexpected image shape: %s' % str(image_data.shape))
dataset[num_images, :, :] = image_data
num_images = num_images + 1
except (IOError, ValueError) as e:
print('Could not read:', image_file, ':', e, '- it\'s ok, skipping.')
dataset = dataset[0:num_images, :, :]
if num_images < min_num_images:
raise Exception('Many fewer images than expected: %d < %d' %
(num_images, min_num_images))
print('Full dataset tensor:', dataset.shape)
print('Mean:', np.mean(dataset))
print('Standard deviation:', np.std(dataset))
return dataset
def maybe_pickle(data_folders, min_num_images_per_class, force=False):
dataset_names = []
for folder in data_folders:
set_filename = folder + '.pickle'
dataset_names.append(set_filename)
if os.path.exists(set_filename) and not force:
# You may override by setting force=True.
print('%s already present - Skipping pickling.' % set_filename)
else:
print('Pickling %s.' % set_filename)
dataset = load_letter(folder, min_num_images_per_class)
try:
with open(set_filename, 'wb') as f:
pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
except Exception as e:
print('Unable to save data to', set_filename, ':', e)
return dataset_names
train_datasets = maybe_pickle(train_folders, 45000)
test_datasets = maybe_pickle(test_folders, 1800)
# In[15]:
import random
def disp_samples(data_folders, sample_size):
for folder in data_folders:
print(folder)
image_files = os.listdir(folder)
image_sample = random.sample(image_files, sample_size) #returns unique list of size sample_size from image_files
for image in image_sample:
image_file = os.path.join(folder, image)
i = Image(filename=image_file)
display(i)
disp_samples(train_folders,1)
# In[16]:
train_datasets
# In[26]:
def display_sample_images(pickle_filename_array):
for pickle_file in pickle_filename_array:
print(pickle_file)
try:
with open(pickle_file, 'rb') as pik:
dataset = pickle.load(pik) #unpickle
except Exception as e:
print("unable to unpickle ", pickle_file, " : ", e)
return
sample_idx = np.random.randint(len(dataset))
sample_img = dataset[sample_idx, :, :]
plt.figure()
plt.imshow(sample_img)
display_sample_images(train_datasets)
# In[27]:
def disp_number_images(data_folders):
for folder in data_folders:
pickle_filename = ''.join(folder) + '.pickle'
try:
with open(pickle_filename, 'rb') as f:
dataset = pickle.load(f)
except Exception as e:
print('Unable to read data from', pickle_filename, ':', e)
return
print('Number of images in ', folder, ' : ', len(dataset))
disp_number_images(train_folders)
disp_number_images(test_folders)
# In[28]:
image_size
# In[30]:
def make_arrays(nb_rows, img_size):
if nb_rows:
dataset = np.ndarray((nb_rows, img_size, img_size), dtype=np.float32)
labels = np.ndarray(nb_rows, dtype=np.int32)
else:
dataset, labels = None, None
return dataset, labels
def merge_datasets(pickle_files, train_size, valid_size=0):
num_classes = len(pickle_files)
valid_dataset, valid_labels = make_arrays(valid_size, image_size)
train_dataset, train_labels = make_arrays(train_size, image_size)
vsize_per_class = valid_size // num_classes
tsize_per_class = train_size // num_classes
start_v, start_t = 0, 0
end_v, end_t = vsize_per_class, tsize_per_class
end_l = vsize_per_class+tsize_per_class
for label, pickle_file in enumerate(pickle_files):
print(pickle_file, label)
try:
with open(pickle_file, 'rb') as f:
letter_set = pickle.load(f)
# let's shuffle the letters to have random validation and training set
np.random.shuffle(letter_set)
if valid_dataset is not None:
valid_letter = letter_set[:vsize_per_class, :, :]
valid_dataset[start_v:end_v, :, :] = valid_letter
valid_labels[start_v:end_v] = label
start_v += vsize_per_class
end_v += vsize_per_class
train_letter = letter_set[vsize_per_class:end_l, :, :]
train_dataset[start_t:end_t, :, :] = train_letter
train_labels[start_t:end_t] = label
start_t += tsize_per_class
end_t += tsize_per_class
except Exception as e:
print('Unable to process data from', pickle_file, ':', e)
raise
return valid_dataset, valid_labels, train_dataset, train_labels
train_size = 200000
valid_size = 10000
test_size = 10000
valid_dataset, valid_labels, train_dataset, train_labels = merge_datasets(
train_datasets, train_size, valid_size)
_, _, test_dataset, test_labels = merge_datasets(test_datasets, test_size)
# In[31]:
print('Training:', train_dataset.shape, train_labels.shape)
print('Validation:', valid_dataset.shape, valid_labels.shape)
print('Testing:', test_dataset.shape, test_labels.shape)
# In[32]:
def randomize(dataset, labels):
permutation = np.random.permutation(labels.shape[0])
shuffled_dataset = dataset[permutation,:,:]
shuffled_labels = labels[permutation]
return shuffled_dataset, shuffled_labels
train_dataset, train_labels = randomize(train_dataset, train_labels)
test_dataset, test_labels = randomize(test_dataset, test_labels)
valid_dataset, valid_labels = randomize(valid_dataset, valid_labels)
# In[33]:
pretty_labels = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', 9: 'J'}
# In[34]:
def disp_sample_dataset(dataset, labels):
items = random.sample(range(len(labels)), 8)
for i, item in enumerate(items):
plt.subplot(2, 4, i+1)
plt.axis('off')
plt.title(pretty_labels[labels[item]])
plt.imshow(dataset[item])
# In[36]:
disp_sample_dataset(train_dataset, train_labels)
# In[37]:
disp_sample_dataset(valid_dataset, valid_labels)
# In[38]:
disp_sample_dataset(test_dataset, test_labels)
# In[39]:
pickle_file = 'notMNIST.pickle'
try:
f = open(pickle_file, 'wb')
save = {
'train_dataset': train_dataset,
'train_labels': train_labels,
'valid_dataset': valid_dataset,
'valid_labels': valid_labels,
'test_dataset': test_dataset,
'test_labels': test_labels,
}
pickle.dump(save, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to', pickle_file, ':', e)
raise
# In[40]:
statinfo = os.stat(pickle_file)
print('Compressed pickle size:', statinfo.st_size)
# In[52]:
# display one of the duplicate, the first element is from the first dataset, and the next ones are from the dataset used for the comparison.
def display_overlap(overlap, source_dataset, target_dataset):
item = random.choice(list(overlap.keys()))
imgs = np.concatenate(([source_dataset[item]], target_dataset[overlap[item][0:7]]))
plt.suptitle(item)
for i, img in enumerate(imgs):
plt.subplot(2, 4, i+1)
plt.axis('off')
plt.imshow(img)
# In[48]:
def extract_overlap(dataset_1, dataset_2):
overlap = {}
for i, img_1 in enumerate(dataset_1):
for j, img_2 in enumerate(dataset_2):
if np.array_equal(img_1, img_2):
if not i in overlap.keys():
overlap[i] = []
overlap[i].append(j)
return overlap
# In[43]:
get_ipython().run_line_magic('time', 'overlap_test_train = extract_overlap(test_dataset[:200], train_dataset)')
# In[53]:
print('Number of overlaps:', len(overlap_test_train))
display_overlap(overlap_test_train, test_dataset[:200], train_dataset)
# Now that exact duplicates have been found, let's look for near duplicates. How to define near identical images? That's a tricky question. My first thought has been to use the allclose numpy matrix comparison. This is too restrictive, since two images can vary by one pyxel, and still be very similar even if the variation on the pyxel is large. A better solution involves some kind of average.
# To keep is simple and still relevant, I will use a Manhattan norm (sum of absolute values) of the difference matrix. Since the images of the dataset have all the same size, I will not normalize the norm value. Note that it is pyxel by pyxel comparison, and therefore it will not scale to the whole dataset, but it will help to understand image similarities.
# In[54]:
MAX_MANHATTAN_NORM = 10
def extract_overlap_near(dataset_1, dataset_2):
overlap = {}
for i, img_1 in enumerate(dataset_1):
for j, img_2 in enumerate(dataset_2):
diff = img_1 - img_2
m_norm = np.sum(np.abs(diff))
if m_norm < MAX_MANHATTAN_NORM:
if not i in overlap.keys():
overlap[i] = []
overlap[i].append(j)
return overlap
# In[55]:
get_ipython().run_line_magic('time', 'overlap_test_train_near = extract_overlap_near(test_dataset[:200], train_dataset)')
# In[57]:
print('Number of near overlaps:', len(overlap_test_train_near.keys()))
display_overlap(overlap_test_train_near, test_dataset[:200], train_dataset)
# The techniques above work well, but the performance is very low and the methods are poorly scalable to the full dataset. Let's try to improve the performance. Let's take some reference times on a small dataset.
# Here are some ideas:
# stop a the first occurence
# nympy function where in diff dataset
# hash comparison
# In[58]:
def extract_overlap_stop(dataset_1, dataset_2):
overlap = {}
for i, img_1 in enumerate(dataset_1):
for j, img_2 in enumerate(dataset_2):
if np.array_equal(img_1, img_2):
overlap[i] = [j]
break
return overlap
# In[59]:
get_ipython().run_line_magic('time', 'overlap_test_train = extract_overlap_stop(test_dataset[:200], train_dataset)')
# In[60]:
print('Number of overlaps:', len(overlap_test_train.keys()))
display_overlap(overlap_test_train, test_dataset[:200], train_dataset)
# It is a faster, and only one duplicate from the second dataset is displayed. This is still not scalable.
# In[61]:
MAX_MANHATTAN_NORM = 10
def extract_overlap_where(dataset_1, dataset_2):
overlap = {}
for i, img_1 in enumerate(dataset_1):
diff = dataset_2 - img_1
norm = np.sum(np.abs(diff), axis=1)
duplicates = np.where(norm < MAX_MANHATTAN_NORM)
if len(duplicates[0]):
overlap[i] = duplicates[0]
return overlap
# In[63]:
test_flat = test_dataset.reshape(test_dataset.shape[0], 28 * 28)
train_flat = train_dataset.reshape(train_dataset.shape[0], 28 * 28)
get_ipython().run_line_magic('time', 'overlap_test_train = extract_overlap_where(test_flat[:200], train_flat)')
# In[64]:
print('Number of overlaps:', len(overlap_test_train.keys()))
display_overlap(overlap_test_train, test_dataset[:200], train_dataset)
# The built-in numpy function provides some improvement either, but this algorithm is still not scalable to the dataset to its full extend.
# To make it work at scale, the best option is to use a hash function. To find exact duplicates, the hash functions used for the cryptography will work just fine.
# In[71]:
import hashlib
def extract_overlap_hash(dataset_1, dataset_2):
dataset_hash_1 = [hashlib.sha256(img).hexdigest() for img in dataset_1]
dataset_hash_2 = [hashlib.sha256(img).hexdigest() for img in dataset_2]
overlap = {}
for i, hash1 in enumerate(dataset_hash_1):
for j, hash2 in enumerate(dataset_hash_2):
if hash1 == hash2:
if not i in overlap.keys():
overlap[i] = []
overlap[i].append(j) ## use np.where
return overlap
# In[72]:
get_ipython().run_line_magic('time', 'overlap_test_train = extract_overlap_hash(test_dataset[:200], train_dataset)')
# In[73]:
print('Number of overlaps:', len(overlap_test_train.keys()))
display_overlap(overlap_test_train, test_dataset[:200], train_dataset)
# More overlapping values could be found, this is due to the hash collisions. Several images can have the same hash but are actually different differents. This is not noticed here, and even if it happens, this is acceptable. All duplicates will be removed for sure.
# We can make the processing a but faster by using the built-in numpy wherefunction.
# In[74]:
def extract_overlap_hash_where(dataset_1, dataset_2):
dataset_hash_1 = np.array([hashlib.sha256(img).hexdigest() for img in dataset_1])
dataset_hash_2 = np.array([hashlib.sha256(img).hexdigest() for img in dataset_2])
overlap = {}
for i, hash1 in enumerate(dataset_hash_1):
duplicates = np.where(dataset_hash_2 == hash1)
if len(duplicates[0]):
overlap[i] = duplicates[0]
return overlap
# In[75]:
get_ipython().run_line_magic('time', 'overlap_test_train = extract_overlap_hash_where(test_dataset[:200], train_dataset)')
# In[70]:
print('Number of overlaps:', len(overlap_test_train.keys()))
display_overlap(overlap_test_train, test_dataset[:200], train_dataset)
#
# From my perspective near duplicates should also be removed in the sanitized datasets. My assumption is that "near" duplicates are very very close (sometimes just there is a one pyxel border of difference), and penalyze the training the same way the true duplicates do.
# That's being said, finding near duplicates with a hash function is not obvious. There are techniques for that, like "locally sensitive hashing", "perceptual hashing" or "difference hashing". There even are Python library available. Unfortunatly I did not have time to try them. The sanitized dataset generated below are based on true duplicates found with a cryptography hash function.
# For sanitizing the dataset, I change the function above by returning the clean dataset directly.
# In[76]:
def sanetize(dataset_1, dataset_2, labels_1):
dataset_hash_1 = np.array([hashlib.sha256(img).hexdigest() for img in dataset_1])
dataset_hash_2 = np.array([hashlib.sha256(img).hexdigest() for img in dataset_2])
overlap = [] # list of indexes
for i, hash1 in enumerate(dataset_hash_1):
duplicates = np.where(dataset_hash_2 == hash1)
if len(duplicates[0]):
overlap.append(i)
return np.delete(dataset_1, overlap, 0), np.delete(labels_1, overlap, None)
# In[77]:
get_ipython().run_line_magic('time', 'test_dataset_sanit, test_labels_sanit = sanetize(test_dataset[:200], train_dataset, test_labels[:200])')
print('Overlapping images removed: ', len(test_dataset[:200]) - len(test_dataset_sanit))
# The same value is found, so we can now sanetize the test and the train datasets.
# In[78]:
get_ipython().run_line_magic('time', 'test_dataset_sanit, test_labels_sanit = sanetize(test_dataset, train_dataset, test_labels)')
print('Overlapping images removed: ', len(test_dataset) - len(test_dataset_sanit))
# In[79]:
get_ipython().run_line_magic('time', 'valid_dataset_sanit, valid_labels_sanit = sanetize(valid_dataset, train_dataset, valid_labels)')
print('Overlapping images removed: ', len(valid_dataset) - len(valid_dataset_sanit))
# In[80]:
pickle_file_sanit = 'notMNIST_sanit.pickle'
try:
f = open(pickle_file_sanit, 'wb')
save = {
'train_dataset': train_dataset,
'train_labels': train_labels,
'valid_dataset': valid_dataset_sanit,
'valid_labels': valid_labels_sanit,
'test_dataset': test_dataset_sanit,
'test_labels': test_labels_sanit,
}
pickle.dump(save, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to', pickle_file, ':', e)
raise
# In[81]:
statinfo = os.stat(pickle_file_sanit)
print('Compressed pickle size:', statinfo.st_size)
# In[82]:
regr = LogisticRegression()
X_test = test_dataset.reshape(test_dataset.shape[0], 28 * 28)
y_test = test_labels
# In[87]:
sample_size = 50
X_train = train_dataset[:sample_size].reshape(sample_size, 784)
y_train = train_labels[:sample_size]
# In[91]:
X_train.shape, y_train.shape
# __init__(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1)[source]
# In[92]:
get_ipython().run_line_magic('time', 'regr.fit(X_train, y_train)')
regr.score(X_test, y_test) #return the mean accuracy on the given test data and labels
# In[93]:
pred_labels = regr.predict(X_test)
disp_sample_dataset(test_dataset, pred_labels)
# In[94]:
sample_size = 100
X_train = train_dataset[:sample_size].reshape(sample_size, 784)
y_train = train_labels[:sample_size]
get_ipython().run_line_magic('time', 'regr.fit(X_train, y_train)')
regr.score(X_test, y_test)
# In[95]:
sample_size = 1000
X_train = train_dataset[:sample_size].reshape(sample_size, 784)
y_train = train_labels[:sample_size]
get_ipython().run_line_magic('time', 'regr.fit(X_train, y_train)')
regr.score(X_test, y_test)
# In[96]:
X_valid = valid_dataset[:sample_size].reshape(sample_size, 784)
y_valid = valid_labels[:sample_size]
regr.score(X_valid, y_valid)
# In[97]:
pred_labels = regr.predict(X_valid)
disp_sample_dataset(valid_dataset, pred_labels)
# In[98]:
sample_size = 5000
X_train = train_dataset[:sample_size].reshape(sample_size, 784)
y_train = train_labels[:sample_size]
get_ipython().run_line_magic('time', 'regr.fit(X_train, y_train)')
regr.score(X_test, y_test)
# In[99]:
regr2 = LogisticRegression(solver='sag')
sample_size = 50
X_train = train_dataset[:sample_size].reshape(sample_size, 784)
y_train = train_labels[:sample_size]
get_ipython().run_line_magic('time', 'regr2.fit(X_train, y_train)')
regr2.score(X_test, y_test)
# To train the model on all the data, we have to use another solver. SAG is the faster one.( stochastic gradient descent)
# In[102]:
regr2 = LogisticRegression(solver='sag')
sample_size = len(train_dataset)
X_train = train_dataset[:sample_size].reshape(sample_size, 784)
y_train = train_labels[:sample_size]
get_ipython().run_line_magic('time', 'regr2.fit(X_train, y_train)')
regr2.score(X_test, y_test)
# In[103]:
pred_labels = regr.predict(X_test)
disp_sample_dataset(test_dataset, pred_labels)