forked from bdring/Grbl_HBot_midTbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gcode.c
1160 lines (1024 loc) · 61.2 KB
/
gcode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
gcode.c - rs274/ngc parser.
Part of Grbl
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
// NOTE: Max line number is defined by the g-code standard to be 99999. It seems to be an
// arbitrary value, and some GUIs may require more. So we increased it based on a max safe
// value when converting a float (7.2 digit precision)s to an integer.
#define MAX_LINE_NUMBER 10000000
#define MAX_TOOL_NUMBER 255 // Limited by max unsigned 8-bit value
#define AXIS_COMMAND_NONE 0
#define AXIS_COMMAND_NON_MODAL 1
#define AXIS_COMMAND_MOTION_MODE 2
#define AXIS_COMMAND_TOOL_LENGTH_OFFSET 3 // *Undefined but required
// Declare gc extern struct
parser_state_t gc_state;
parser_block_t gc_block;
#define FAIL(status) return(status);
void gc_init()
{
memset(&gc_state, 0, sizeof(parser_state_t));
// Load default G54 coordinate system.
if (!(settings_read_coord_data(gc_state.modal.coord_select,gc_state.coord_system))) {
report_status_message(STATUS_SETTING_READ_FAIL);
}
}
// Sets g-code parser position in mm. Input in steps. Called by the system abort and hard
// limit pull-off routines.
void gc_sync_position()
{
system_convert_array_steps_to_mpos(gc_state.position,sys_position);
}
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
// characters and signed floating point values (no whitespace). Comments and block delete
// characters have been removed. In this function, all units and positions are converted and
// exported to grbl's internal functions in terms of (mm, mm/min) and absolute machine
// coordinates, respectively.
uint8_t gc_execute_line(char *line)
{
/* -------------------------------------------------------------------------------------
STEP 1: Initialize parser block struct and copy current g-code state modes. The parser
updates these modes and commands as the block line is parser and will only be used and
executed after successful error-checking. The parser block struct also contains a block
values struct, word tracking variables, and a non-modal commands tracker for the new
block. This struct contains all of the necessary information to execute the block. */
memset(&gc_block, 0, sizeof(parser_block_t)); // Initialize the parser block struct.
memcpy(&gc_block.modal,&gc_state.modal,sizeof(gc_modal_t)); // Copy current modes
uint8_t axis_command = AXIS_COMMAND_NONE;
uint8_t axis_0, axis_1, axis_linear;
uint8_t coord_select = 0; // Tracks G10 P coordinate selection for execution
// Initialize bitflag tracking variables for axis indices compatible operations.
uint8_t axis_words = 0; // XYZ tracking
uint8_t ijk_words = 0; // IJK tracking
// Initialize command and value words and parser flags variables.
uint16_t command_words = 0; // Tracks G and M command words. Also used for modal group violations.
uint16_t value_words = 0; // Tracks value words.
uint8_t gc_parser_flags = GC_PARSER_NONE;
// Determine if the line is a jogging motion or a normal g-code block.
if (line[0] == '$') { // NOTE: `$J=` already parsed when passed to this function.
// Set G1 and G94 enforced modes to ensure accurate error checks.
gc_parser_flags |= GC_PARSER_JOG_MOTION;
gc_block.modal.motion = MOTION_MODE_LINEAR;
gc_block.modal.feed_rate = FEED_RATE_MODE_UNITS_PER_MIN;
#ifdef USE_LINE_NUMBERS
gc_block.values.n = JOG_LINE_NUMBER; // Initialize default line number reported during jog.
#endif
}
/* -------------------------------------------------------------------------------------
STEP 2: Import all g-code words in the block line. A g-code word is a letter followed by
a number, which can either be a 'G'/'M' command or sets/assigns a command value. Also,
perform initial error-checks for command word modal group violations, for any repeated
words, and for negative values set for the value words F, N, P, T, and S. */
uint8_t word_bit; // Bit-value for assigning tracking variables
uint8_t char_counter;
char letter;
float value;
uint8_t int_value = 0;
uint16_t mantissa = 0;
if (gc_parser_flags & GC_PARSER_JOG_MOTION) { char_counter = 3; } // Start parsing after `$J=`
else { char_counter = 0; }
while (line[char_counter] != 0) { // Loop until no more g-code words in line.
// Import the next g-code word, expecting a letter followed by a value. Otherwise, error out.
letter = line[char_counter];
if((letter < 'A') || (letter > 'Z')) { FAIL(STATUS_EXPECTED_COMMAND_LETTER); } // [Expected word letter]
char_counter++;
if (!read_float(line, &char_counter, &value)) { FAIL(STATUS_BAD_NUMBER_FORMAT); } // [Expected word value]
// Convert values to smaller uint8 significand and mantissa values for parsing this word.
// NOTE: Mantissa is multiplied by 100 to catch non-integer command values. This is more
// accurate than the NIST gcode requirement of x10 when used for commands, but not quite
// accurate enough for value words that require integers to within 0.0001. This should be
// a good enough comprimise and catch most all non-integer errors. To make it compliant,
// we would simply need to change the mantissa to int16, but this add compiled flash space.
// Maybe update this later.
int_value = trunc(value);
mantissa = round(100*(value - int_value)); // Compute mantissa for Gxx.x commands.
// NOTE: Rounding must be used to catch small floating point errors.
// Check if the g-code word is supported or errors due to modal group violations or has
// been repeated in the g-code block. If ok, update the command or record its value.
switch(letter) {
/* 'G' and 'M' Command Words: Parse commands and check for modal group violations.
NOTE: Modal group numbers are defined in Table 4 of NIST RS274-NGC v3, pg.20 */
case 'G':
// Determine 'G' command and its modal group
switch(int_value) {
case 10: case 28: case 30: case 92:
// Check for G10/28/30/92 being called with G0/1/2/3/38 on same block.
// * G43.1 is also an axis command but is not explicitly defined this way.
if (mantissa == 0) { // Ignore G28.1, G30.1, and G92.1
if (axis_command) { FAIL(STATUS_GCODE_AXIS_COMMAND_CONFLICT); } // [Axis word/command conflict]
axis_command = AXIS_COMMAND_NON_MODAL;
}
// No break. Continues to next line.
case 4: case 53:
word_bit = MODAL_GROUP_G0;
gc_block.non_modal_command = int_value;
if ((int_value == 28) || (int_value == 30) || (int_value == 92)) {
if (!((mantissa == 0) || (mantissa == 10))) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); }
gc_block.non_modal_command += mantissa;
mantissa = 0; // Set to zero to indicate valid non-integer G command.
}
break;
case 0: case 1: case 2: case 3: case 38:
// Check for G0/1/2/3/38 being called with G10/28/30/92 on same block.
// * G43.1 is also an axis command but is not explicitly defined this way.
if (axis_command) { FAIL(STATUS_GCODE_AXIS_COMMAND_CONFLICT); } // [Axis word/command conflict]
axis_command = AXIS_COMMAND_MOTION_MODE;
// No break. Continues to next line.
case 80:
word_bit = MODAL_GROUP_G1;
gc_block.modal.motion = int_value;
if (int_value == 38){
if (!((mantissa == 20) || (mantissa == 30) || (mantissa == 40) || (mantissa == 50))) {
FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); // [Unsupported G38.x command]
}
gc_block.modal.motion += (mantissa/10)+100;
mantissa = 0; // Set to zero to indicate valid non-integer G command.
}
break;
case 17: case 18: case 19:
word_bit = MODAL_GROUP_G2;
gc_block.modal.plane_select = int_value - 17;
break;
case 90: case 91:
if (mantissa == 0) {
word_bit = MODAL_GROUP_G3;
gc_block.modal.distance = int_value - 90;
} else {
word_bit = MODAL_GROUP_G4;
if ((mantissa != 10) || (int_value == 90)) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [G90.1 not supported]
mantissa = 0; // Set to zero to indicate valid non-integer G command.
// Otherwise, arc IJK incremental mode is default. G91.1 does nothing.
}
break;
case 93: case 94:
word_bit = MODAL_GROUP_G5;
gc_block.modal.feed_rate = 94 - int_value;
break;
case 20: case 21:
word_bit = MODAL_GROUP_G6;
gc_block.modal.units = 21 - int_value;
break;
case 40:
word_bit = MODAL_GROUP_G7;
// NOTE: Not required since cutter radius compensation is always disabled. Only here
// to support G40 commands that often appear in g-code program headers to setup defaults.
// gc_block.modal.cutter_comp = CUTTER_COMP_DISABLE; // G40
break;
case 43: case 49:
word_bit = MODAL_GROUP_G8;
// NOTE: The NIST g-code standard vaguely states that when a tool length offset is changed,
// there cannot be any axis motion or coordinate offsets updated. Meaning G43, G43.1, and G49
// all are explicit axis commands, regardless if they require axis words or not.
if (axis_command) { FAIL(STATUS_GCODE_AXIS_COMMAND_CONFLICT); } // [Axis word/command conflict] }
axis_command = AXIS_COMMAND_TOOL_LENGTH_OFFSET;
if (int_value == 49) { // G49
gc_block.modal.tool_length = TOOL_LENGTH_OFFSET_CANCEL;
} else if (mantissa == 10) { // G43.1
gc_block.modal.tool_length = TOOL_LENGTH_OFFSET_ENABLE_DYNAMIC;
} else { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [Unsupported G43.x command]
mantissa = 0; // Set to zero to indicate valid non-integer G command.
break;
case 54: case 55: case 56: case 57: case 58: case 59:
// NOTE: G59.x are not supported. (But their int_values would be 60, 61, and 62.)
word_bit = MODAL_GROUP_G12;
gc_block.modal.coord_select = int_value - 54; // Shift to array indexing.
break;
case 61:
word_bit = MODAL_GROUP_G13;
if (mantissa != 0) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [G61.1 not supported]
// gc_block.modal.control = CONTROL_MODE_EXACT_PATH; // G61
break;
default: FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); // [Unsupported G command]
}
if (mantissa > 0) { FAIL(STATUS_GCODE_COMMAND_VALUE_NOT_INTEGER); } // [Unsupported or invalid Gxx.x command]
// Check for more than one command per modal group violations in the current block
// NOTE: Variable 'word_bit' is always assigned, if the command is valid.
if ( bit_istrue(command_words,bit(word_bit)) ) { FAIL(STATUS_GCODE_MODAL_GROUP_VIOLATION); }
command_words |= bit(word_bit);
break;
case 'M':
// Determine 'M' command and its modal group
if (mantissa > 0) { FAIL(STATUS_GCODE_COMMAND_VALUE_NOT_INTEGER); } // [No Mxx.x commands]
switch(int_value) {
case 0: case 1: case 2: case 30:
word_bit = MODAL_GROUP_M4;
switch(int_value) {
case 0: gc_block.modal.program_flow = PROGRAM_FLOW_PAUSED; break; // Program pause
case 1: break; // Optional stop not supported. Ignore.
default: gc_block.modal.program_flow = int_value; // Program end and reset
}
break;
case 3: case 4: case 5:
word_bit = MODAL_GROUP_M7;
switch(int_value) {
case 3: gc_block.modal.spindle = SPINDLE_ENABLE_CW; break;
case 4: gc_block.modal.spindle = SPINDLE_ENABLE_CCW; break;
case 5: gc_block.modal.spindle = SPINDLE_DISABLE; break;
}
break;
#ifdef ENABLE_M7
case 7: case 8: case 9:
#else
case 8: case 9:
#endif
word_bit = MODAL_GROUP_M8;
switch(int_value) {
#ifdef ENABLE_M7
case 7: gc_block.modal.coolant = COOLANT_MIST_ENABLE; break;
#endif
case 8: gc_block.modal.coolant = COOLANT_FLOOD_ENABLE; break;
case 9: gc_block.modal.coolant = COOLANT_DISABLE; break;
}
break;
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
case 56:
word_bit = MODAL_GROUP_M9;
gc_block.modal.override = OVERRIDE_PARKING_MOTION;
break;
#endif
default: FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); // [Unsupported M command]
}
// Check for more than one command per modal group violations in the current block
// NOTE: Variable 'word_bit' is always assigned, if the command is valid.
if ( bit_istrue(command_words,bit(word_bit)) ) { FAIL(STATUS_GCODE_MODAL_GROUP_VIOLATION); }
command_words |= bit(word_bit);
break;
// NOTE: All remaining letters assign values.
default:
/* Non-Command Words: This initial parsing phase only checks for repeats of the remaining
legal g-code words and stores their value. Error-checking is performed later since some
words (I,J,K,L,P,R) have multiple connotations and/or depend on the issued commands. */
switch(letter){
// case 'A': // Not supported
// case 'B': // Not supported
// case 'C': // Not supported
// case 'D': // Not supported
case 'F': word_bit = WORD_F; gc_block.values.f = value; break;
// case 'H': // Not supported
case 'I': word_bit = WORD_I; gc_block.values.ijk[X_AXIS] = value; ijk_words |= (1<<X_AXIS); break;
case 'J': word_bit = WORD_J; gc_block.values.ijk[Y_AXIS] = value; ijk_words |= (1<<Y_AXIS); break;
case 'K': word_bit = WORD_K; gc_block.values.ijk[Z_AXIS] = value; ijk_words |= (1<<Z_AXIS); break;
case 'L': word_bit = WORD_L; gc_block.values.l = int_value; break;
case 'N': word_bit = WORD_N; gc_block.values.n = trunc(value); break;
case 'P': word_bit = WORD_P; gc_block.values.p = value; break;
// NOTE: For certain commands, P value must be an integer, but none of these commands are supported.
// case 'Q': // Not supported
case 'R': word_bit = WORD_R; gc_block.values.r = value; break;
case 'S': word_bit = WORD_S; gc_block.values.s = value; break;
case 'T': word_bit = WORD_T;
if (value > MAX_TOOL_NUMBER) { FAIL(STATUS_GCODE_MAX_VALUE_EXCEEDED); }
gc_block.values.t = int_value;
break;
case 'X': word_bit = WORD_X; gc_block.values.xyz[X_AXIS] = value; axis_words |= (1<<X_AXIS); break;
case 'Y': word_bit = WORD_Y; gc_block.values.xyz[Y_AXIS] = value; axis_words |= (1<<Y_AXIS); break;
case 'Z': word_bit = WORD_Z; gc_block.values.xyz[Z_AXIS] = value; axis_words |= (1<<Z_AXIS); break;
default: FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND);
}
// NOTE: Variable 'word_bit' is always assigned, if the non-command letter is valid.
if (bit_istrue(value_words,bit(word_bit))) { FAIL(STATUS_GCODE_WORD_REPEATED); } // [Word repeated]
// Check for invalid negative values for words F, N, P, T, and S.
// NOTE: Negative value check is done here simply for code-efficiency.
if ( bit(word_bit) & (bit(WORD_F)|bit(WORD_N)|bit(WORD_P)|bit(WORD_T)|bit(WORD_S)) ) {
if (value < 0.0) { FAIL(STATUS_NEGATIVE_VALUE); } // [Word value cannot be negative]
}
value_words |= bit(word_bit); // Flag to indicate parameter assigned.
}
}
// Parsing complete!
/* -------------------------------------------------------------------------------------
STEP 3: Error-check all commands and values passed in this block. This step ensures all of
the commands are valid for execution and follows the NIST standard as closely as possible.
If an error is found, all commands and values in this block are dumped and will not update
the active system g-code modes. If the block is ok, the active system g-code modes will be
updated based on the commands of this block, and signal for it to be executed.
Also, we have to pre-convert all of the values passed based on the modes set by the parsed
block. There are a number of error-checks that require target information that can only be
accurately calculated if we convert these values in conjunction with the error-checking.
This relegates the next execution step as only updating the system g-code modes and
performing the programmed actions in order. The execution step should not require any
conversion calculations and would only require minimal checks necessary to execute.
*/
/* NOTE: At this point, the g-code block has been parsed and the block line can be freed.
NOTE: It's also possible, at some future point, to break up STEP 2, to allow piece-wise
parsing of the block on a per-word basis, rather than the entire block. This could remove
the need for maintaining a large string variable for the entire block and free up some memory.
To do this, this would simply need to retain all of the data in STEP 1, such as the new block
data struct, the modal group and value bitflag tracking variables, and axis array indices
compatible variables. This data contains all of the information necessary to error-check the
new g-code block when the EOL character is received. However, this would break Grbl's startup
lines in how it currently works and would require some refactoring to make it compatible.
*/
// [0. Non-specific/common error-checks and miscellaneous setup]:
// Determine implicit axis command conditions. Axis words have been passed, but no explicit axis
// command has been sent. If so, set axis command to current motion mode.
if (axis_words) {
if (!axis_command) { axis_command = AXIS_COMMAND_MOTION_MODE; } // Assign implicit motion-mode
}
// Check for valid line number N value.
if (bit_istrue(value_words,bit(WORD_N))) {
// Line number value cannot be less than zero (done) or greater than max line number.
if (gc_block.values.n > MAX_LINE_NUMBER) { FAIL(STATUS_GCODE_INVALID_LINE_NUMBER); } // [Exceeds max line number]
}
// bit_false(value_words,bit(WORD_N)); // NOTE: Single-meaning value word. Set at end of error-checking.
// Track for unused words at the end of error-checking.
// NOTE: Single-meaning value words are removed all at once at the end of error-checking, because
// they are always used when present. This was done to save a few bytes of flash. For clarity, the
// single-meaning value words may be removed as they are used. Also, axis words are treated in the
// same way. If there is an explicit/implicit axis command, XYZ words are always used and are
// are removed at the end of error-checking.
// [1. Comments ]: MSG's NOT SUPPORTED. Comment handling performed by protocol.
// [2. Set feed rate mode ]: G93 F word missing with G1,G2/3 active, implicitly or explicitly. Feed rate
// is not defined after switching to G94 from G93.
// NOTE: For jogging, ignore prior feed rate mode. Enforce G94 and check for required F word.
if (gc_parser_flags & GC_PARSER_JOG_MOTION) {
if (bit_isfalse(value_words,bit(WORD_F))) { FAIL(STATUS_GCODE_UNDEFINED_FEED_RATE); }
if (gc_block.modal.units == UNITS_MODE_INCHES) { gc_block.values.f *= MM_PER_INCH; }
} else {
if (gc_block.modal.feed_rate == FEED_RATE_MODE_INVERSE_TIME) { // = G93
// NOTE: G38 can also operate in inverse time, but is undefined as an error. Missing F word check added here.
if (axis_command == AXIS_COMMAND_MOTION_MODE) {
if ((gc_block.modal.motion != MOTION_MODE_NONE) && (gc_block.modal.motion != MOTION_MODE_SEEK)) {
if (bit_isfalse(value_words,bit(WORD_F))) { FAIL(STATUS_GCODE_UNDEFINED_FEED_RATE); } // [F word missing]
}
}
// NOTE: It seems redundant to check for an F word to be passed after switching from G94 to G93. We would
// accomplish the exact same thing if the feed rate value is always reset to zero and undefined after each
// inverse time block, since the commands that use this value already perform undefined checks. This would
// also allow other commands, following this switch, to execute and not error out needlessly. This code is
// combined with the above feed rate mode and the below set feed rate error-checking.
// [3. Set feed rate ]: F is negative (done.)
// - In inverse time mode: Always implicitly zero the feed rate value before and after block completion.
// NOTE: If in G93 mode or switched into it from G94, just keep F value as initialized zero or passed F word
// value in the block. If no F word is passed with a motion command that requires a feed rate, this will error
// out in the motion modes error-checking. However, if no F word is passed with NO motion command that requires
// a feed rate, we simply move on and the state feed rate value gets updated to zero and remains undefined.
} else { // = G94
// - In units per mm mode: If F word passed, ensure value is in mm/min, otherwise push last state value.
if (gc_state.modal.feed_rate == FEED_RATE_MODE_UNITS_PER_MIN) { // Last state is also G94
if (bit_istrue(value_words,bit(WORD_F))) {
if (gc_block.modal.units == UNITS_MODE_INCHES) { gc_block.values.f *= MM_PER_INCH; }
} else {
gc_block.values.f = gc_state.feed_rate; // Push last state feed rate
}
} // Else, switching to G94 from G93, so don't push last state feed rate. Its undefined or the passed F word value.
}
}
// bit_false(value_words,bit(WORD_F)); // NOTE: Single-meaning value word. Set at end of error-checking.
// [4. Set spindle speed ]: S is negative (done.)
if (bit_isfalse(value_words,bit(WORD_S))) { gc_block.values.s = gc_state.spindle_speed; }
// bit_false(value_words,bit(WORD_S)); // NOTE: Single-meaning value word. Set at end of error-checking.
// [5. Select tool ]: NOT SUPPORTED. Only tracks value. T is negative (done.) Not an integer. Greater than max tool value.
// bit_false(value_words,bit(WORD_T)); // NOTE: Single-meaning value word. Set at end of error-checking.
// [6. Change tool ]: N/A
// [7. Spindle control ]: N/A
// [8. Coolant control ]: N/A
// [9. Override control ]: Not supported except for a Grbl-only parking motion override control.
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
if (bit_istrue(command_words,bit(MODAL_GROUP_M9))) { // Already set as enabled in parser.
if (bit_istrue(value_words,bit(WORD_P))) {
if (gc_block.values.p == 0.0) { gc_block.modal.override = OVERRIDE_DISABLED; }
bit_false(value_words,bit(WORD_P));
}
}
#endif
// [10. Dwell ]: P value missing. P is negative (done.) NOTE: See below.
if (gc_block.non_modal_command == NON_MODAL_DWELL) {
if (bit_isfalse(value_words,bit(WORD_P))) { FAIL(STATUS_GCODE_VALUE_WORD_MISSING); } // [P word missing]
bit_false(value_words,bit(WORD_P));
}
// [11. Set active plane ]: N/A
switch (gc_block.modal.plane_select) {
case PLANE_SELECT_XY:
axis_0 = X_AXIS;
axis_1 = Y_AXIS;
axis_linear = Z_AXIS;
break;
case PLANE_SELECT_ZX:
axis_0 = Z_AXIS;
axis_1 = X_AXIS;
axis_linear = Y_AXIS;
break;
default: // case PLANE_SELECT_YZ:
axis_0 = Y_AXIS;
axis_1 = Z_AXIS;
axis_linear = X_AXIS;
}
// [12. Set length units ]: N/A
// Pre-convert XYZ coordinate values to millimeters, if applicable.
uint8_t idx;
if (gc_block.modal.units == UNITS_MODE_INCHES) {
for (idx=0; idx<N_AXIS; idx++) { // Axes indices are consistent, so loop may be used.
if (bit_istrue(axis_words,bit(idx)) ) {
gc_block.values.xyz[idx] *= MM_PER_INCH;
}
}
}
// [13. Cutter radius compensation ]: G41/42 NOT SUPPORTED. Error, if enabled while G53 is active.
// [G40 Errors]: G2/3 arc is programmed after a G40. The linear move after disabling is less than tool diameter.
// NOTE: Since cutter radius compensation is never enabled, these G40 errors don't apply. Grbl supports G40
// only for the purpose to not error when G40 is sent with a g-code program header to setup the default modes.
// [14. Cutter length compensation ]: G43 NOT SUPPORTED, but G43.1 and G49 are.
// [G43.1 Errors]: Motion command in same line.
// NOTE: Although not explicitly stated so, G43.1 should be applied to only one valid
// axis that is configured (in config.h). There should be an error if the configured axis
// is absent or if any of the other axis words are present.
if (axis_command == AXIS_COMMAND_TOOL_LENGTH_OFFSET ) { // Indicates called in block.
if (gc_block.modal.tool_length == TOOL_LENGTH_OFFSET_ENABLE_DYNAMIC) {
if (axis_words ^ (1<<TOOL_LENGTH_OFFSET_AXIS)) { FAIL(STATUS_GCODE_G43_DYNAMIC_AXIS_ERROR); }
}
}
// [15. Coordinate system selection ]: *N/A. Error, if cutter radius comp is active.
// TODO: An EEPROM read of the coordinate data may require a buffer sync when the cycle
// is active. The read pauses the processor temporarily and may cause a rare crash. For
// future versions on processors with enough memory, all coordinate data should be stored
// in memory and written to EEPROM only when there is not a cycle active.
float block_coord_system[N_AXIS];
memcpy(block_coord_system,gc_state.coord_system,sizeof(gc_state.coord_system));
if ( bit_istrue(command_words,bit(MODAL_GROUP_G12)) ) { // Check if called in block
if (gc_block.modal.coord_select > N_COORDINATE_SYSTEM) { FAIL(STATUS_GCODE_UNSUPPORTED_COORD_SYS); } // [Greater than N sys]
if (gc_state.modal.coord_select != gc_block.modal.coord_select) {
if (!(settings_read_coord_data(gc_block.modal.coord_select,block_coord_system))) { FAIL(STATUS_SETTING_READ_FAIL); }
}
}
// [16. Set path control mode ]: N/A. Only G61. G61.1 and G64 NOT SUPPORTED.
// [17. Set distance mode ]: N/A. Only G91.1. G90.1 NOT SUPPORTED.
// [18. Set retract mode ]: NOT SUPPORTED.
// [19. Remaining non-modal actions ]: Check go to predefined position, set G10, or set axis offsets.
// NOTE: We need to separate the non-modal commands that are axis word-using (G10/G28/G30/G92), as these
// commands all treat axis words differently. G10 as absolute offsets or computes current position as
// the axis value, G92 similarly to G10 L20, and G28/30 as an intermediate target position that observes
// all the current coordinate system and G92 offsets.
switch (gc_block.non_modal_command) {
case NON_MODAL_SET_COORDINATE_DATA:
// [G10 Errors]: L missing and is not 2 or 20. P word missing. (Negative P value done.)
// [G10 L2 Errors]: R word NOT SUPPORTED. P value not 0 to nCoordSys(max 9). Axis words missing.
// [G10 L20 Errors]: P must be 0 to nCoordSys(max 9). Axis words missing.
if (!axis_words) { FAIL(STATUS_GCODE_NO_AXIS_WORDS) }; // [No axis words]
if (bit_isfalse(value_words,((1<<WORD_P)|(1<<WORD_L)))) { FAIL(STATUS_GCODE_VALUE_WORD_MISSING); } // [P/L word missing]
coord_select = trunc(gc_block.values.p); // Convert p value to int.
if (coord_select > N_COORDINATE_SYSTEM) { FAIL(STATUS_GCODE_UNSUPPORTED_COORD_SYS); } // [Greater than N sys]
if (gc_block.values.l != 20) {
if (gc_block.values.l == 2) {
if (bit_istrue(value_words,bit(WORD_R))) { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [G10 L2 R not supported]
} else { FAIL(STATUS_GCODE_UNSUPPORTED_COMMAND); } // [Unsupported L]
}
bit_false(value_words,(bit(WORD_L)|bit(WORD_P)));
// Determine coordinate system to change and try to load from EEPROM.
if (coord_select > 0) { coord_select--; } // Adjust P1-P6 index to EEPROM coordinate data indexing.
else { coord_select = gc_block.modal.coord_select; } // Index P0 as the active coordinate system
// NOTE: Store parameter data in IJK values. By rule, they are not in use with this command.
if (!settings_read_coord_data(coord_select,gc_block.values.ijk)) { FAIL(STATUS_SETTING_READ_FAIL); } // [EEPROM read fail]
// Pre-calculate the coordinate data changes.
for (idx=0; idx<N_AXIS; idx++) { // Axes indices are consistent, so loop may be used.
// Update axes defined only in block. Always in machine coordinates. Can change non-active system.
if (bit_istrue(axis_words,bit(idx)) ) {
if (gc_block.values.l == 20) {
// L20: Update coordinate system axis at current position (with modifiers) with programmed value
// WPos = MPos - WCS - G92 - TLO -> WCS = MPos - G92 - TLO - WPos
gc_block.values.ijk[idx] = gc_state.position[idx]-gc_state.coord_offset[idx]-gc_block.values.xyz[idx];
if (idx == TOOL_LENGTH_OFFSET_AXIS) { gc_block.values.ijk[idx] -= gc_state.tool_length_offset; }
} else {
// L2: Update coordinate system axis to programmed value.
gc_block.values.ijk[idx] = gc_block.values.xyz[idx];
}
} // Else, keep current stored value.
}
break;
case NON_MODAL_SET_COORDINATE_OFFSET:
// [G92 Errors]: No axis words.
if (!axis_words) { FAIL(STATUS_GCODE_NO_AXIS_WORDS); } // [No axis words]
// Update axes defined only in block. Offsets current system to defined value. Does not update when
// active coordinate system is selected, but is still active unless G92.1 disables it.
for (idx=0; idx<N_AXIS; idx++) { // Axes indices are consistent, so loop may be used.
if (bit_istrue(axis_words,bit(idx)) ) {
// WPos = MPos - WCS - G92 - TLO -> G92 = MPos - WCS - TLO - WPos
gc_block.values.xyz[idx] = gc_state.position[idx]-block_coord_system[idx]-gc_block.values.xyz[idx];
if (idx == TOOL_LENGTH_OFFSET_AXIS) { gc_block.values.xyz[idx] -= gc_state.tool_length_offset; }
} else {
gc_block.values.xyz[idx] = gc_state.coord_offset[idx];
}
}
break;
default:
// At this point, the rest of the explicit axis commands treat the axis values as the traditional
// target position with the coordinate system offsets, G92 offsets, absolute override, and distance
// modes applied. This includes the motion mode commands. We can now pre-compute the target position.
// NOTE: Tool offsets may be appended to these conversions when/if this feature is added.
if (axis_command != AXIS_COMMAND_TOOL_LENGTH_OFFSET ) { // TLO block any axis command.
if (axis_words) {
for (idx=0; idx<N_AXIS; idx++) { // Axes indices are consistent, so loop may be used to save flash space.
if ( bit_isfalse(axis_words,bit(idx)) ) {
gc_block.values.xyz[idx] = gc_state.position[idx]; // No axis word in block. Keep same axis position.
} else {
// Update specified value according to distance mode or ignore if absolute override is active.
// NOTE: G53 is never active with G28/30 since they are in the same modal group.
if (gc_block.non_modal_command != NON_MODAL_ABSOLUTE_OVERRIDE) {
// Apply coordinate offsets based on distance mode.
if (gc_block.modal.distance == DISTANCE_MODE_ABSOLUTE) {
gc_block.values.xyz[idx] += block_coord_system[idx] + gc_state.coord_offset[idx];
if (idx == TOOL_LENGTH_OFFSET_AXIS) { gc_block.values.xyz[idx] += gc_state.tool_length_offset; }
} else { // Incremental mode
gc_block.values.xyz[idx] += gc_state.position[idx];
}
}
}
}
}
}
// Check remaining non-modal commands for errors.
switch (gc_block.non_modal_command) {
case NON_MODAL_GO_HOME_0: // G28
case NON_MODAL_GO_HOME_1: // G30
// [G28/30 Errors]: Cutter compensation is enabled.
// Retreive G28/30 go-home position data (in machine coordinates) from EEPROM
// NOTE: Store parameter data in IJK values. By rule, they are not in use with this command.
if (gc_block.non_modal_command == NON_MODAL_GO_HOME_0) {
if (!settings_read_coord_data(SETTING_INDEX_G28,gc_block.values.ijk)) { FAIL(STATUS_SETTING_READ_FAIL); }
} else { // == NON_MODAL_GO_HOME_1
if (!settings_read_coord_data(SETTING_INDEX_G30,gc_block.values.ijk)) { FAIL(STATUS_SETTING_READ_FAIL); }
}
if (axis_words) {
// Move only the axes specified in secondary move.
for (idx=0; idx<N_AXIS; idx++) {
if (!(axis_words & (1<<idx))) { gc_block.values.ijk[idx] = gc_state.position[idx]; }
}
} else {
axis_command = AXIS_COMMAND_NONE; // Set to none if no intermediate motion.
}
break;
case NON_MODAL_SET_HOME_0: // G28.1
case NON_MODAL_SET_HOME_1: // G30.1
// [G28.1/30.1 Errors]: Cutter compensation is enabled.
// NOTE: If axis words are passed here, they are interpreted as an implicit motion mode.
break;
case NON_MODAL_RESET_COORDINATE_OFFSET:
// NOTE: If axis words are passed here, they are interpreted as an implicit motion mode.
break;
case NON_MODAL_ABSOLUTE_OVERRIDE:
// [G53 Errors]: G0 and G1 are not active. Cutter compensation is enabled.
// NOTE: All explicit axis word commands are in this modal group. So no implicit check necessary.
if (!(gc_block.modal.motion == MOTION_MODE_SEEK || gc_block.modal.motion == MOTION_MODE_LINEAR)) {
FAIL(STATUS_GCODE_G53_INVALID_MOTION_MODE); // [G53 G0/1 not active]
}
break;
}
}
// [20. Motion modes ]:
if (gc_block.modal.motion == MOTION_MODE_NONE) {
// [G80 Errors]: Axis word are programmed while G80 is active.
// NOTE: Even non-modal commands or TLO that use axis words will throw this strict error.
if (axis_words) { FAIL(STATUS_GCODE_AXIS_WORDS_EXIST); } // [No axis words allowed]
// Check remaining motion modes, if axis word are implicit (exist and not used by G10/28/30/92), or
// was explicitly commanded in the g-code block.
} else if ( axis_command == AXIS_COMMAND_MOTION_MODE ) {
if (gc_block.modal.motion == MOTION_MODE_SEEK) {
// [G0 Errors]: Axis letter not configured or without real value (done.)
// Axis words are optional. If missing, set axis command flag to ignore execution.
if (!axis_words) { axis_command = AXIS_COMMAND_NONE; }
// All remaining motion modes (all but G0 and G80), require a valid feed rate value. In units per mm mode,
// the value must be positive. In inverse time mode, a positive value must be passed with each block.
} else {
// Check if feed rate is defined for the motion modes that require it.
if (gc_block.values.f == 0.0) { FAIL(STATUS_GCODE_UNDEFINED_FEED_RATE); } // [Feed rate undefined]
switch (gc_block.modal.motion) {
case MOTION_MODE_LINEAR:
// [G1 Errors]: Feed rate undefined. Axis letter not configured or without real value.
// Axis words are optional. If missing, set axis command flag to ignore execution.
if (!axis_words) { axis_command = AXIS_COMMAND_NONE; }
break;
case MOTION_MODE_CW_ARC:
gc_parser_flags |= GC_PARSER_ARC_IS_CLOCKWISE; // No break intentional.
case MOTION_MODE_CCW_ARC:
// [G2/3 Errors All-Modes]: Feed rate undefined.
// [G2/3 Radius-Mode Errors]: No axis words in selected plane. Target point is same as current.
// [G2/3 Offset-Mode Errors]: No axis words and/or offsets in selected plane. The radius to the current
// point and the radius to the target point differs more than 0.002mm (EMC def. 0.5mm OR 0.005mm and 0.1% radius).
// [G2/3 Full-Circle-Mode Errors]: NOT SUPPORTED. Axis words exist. No offsets programmed. P must be an integer.
// NOTE: Both radius and offsets are required for arc tracing and are pre-computed with the error-checking.
if (!axis_words) { FAIL(STATUS_GCODE_NO_AXIS_WORDS); } // [No axis words]
if (!(axis_words & (bit(axis_0)|bit(axis_1)))) { FAIL(STATUS_GCODE_NO_AXIS_WORDS_IN_PLANE); } // [No axis words in plane]
// Calculate the change in position along each selected axis
float x,y;
x = gc_block.values.xyz[axis_0]-gc_state.position[axis_0]; // Delta x between current position and target
y = gc_block.values.xyz[axis_1]-gc_state.position[axis_1]; // Delta y between current position and target
if (value_words & bit(WORD_R)) { // Arc Radius Mode
bit_false(value_words,bit(WORD_R));
if (isequal_position_vector(gc_state.position, gc_block.values.xyz)) { FAIL(STATUS_GCODE_INVALID_TARGET); } // [Invalid target]
// Convert radius value to proper units.
if (gc_block.modal.units == UNITS_MODE_INCHES) { gc_block.values.r *= MM_PER_INCH; }
/* We need to calculate the center of the circle that has the designated radius and passes
through both the current position and the target position. This method calculates the following
set of equations where [x,y] is the vector from current to target position, d == magnitude of
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
[i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
d^2 == x^2 + y^2
h^2 == r^2 - (d/2)^2
i == x/2 - y/d*h
j == y/2 + x/d*h
O <- [i,j]
- |
r - |
- |
- | h
- |
[0,0] -> C -----------------+--------------- T <- [x,y]
| <------ d/2 ---->|
C - Current position
T - Target position
O - center of circle that pass through both C and T
d - distance from C to T
r - designated radius
h - distance from center of CT to O
Expanding the equations:
d -> sqrt(x^2 + y^2)
h -> sqrt(4 * r^2 - x^2 - y^2)/2
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
Which can be written:
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
Which we for size and speed reasons optimize to:
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
i = (x - (y * h_x2_div_d))/2
j = (y + (x * h_x2_div_d))/2
*/
// First, use h_x2_div_d to compute 4*h^2 to check if it is negative or r is smaller
// than d. If so, the sqrt of a negative number is complex and error out.
float h_x2_div_d = 4.0 * gc_block.values.r*gc_block.values.r - x*x - y*y;
if (h_x2_div_d < 0) { FAIL(STATUS_GCODE_ARC_RADIUS_ERROR); } // [Arc radius error]
// Finish computing h_x2_div_d.
h_x2_div_d = -sqrt(h_x2_div_d)/hypot_f(x,y); // == -(h * 2 / d)
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
if (gc_block.modal.motion == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
/* The counter clockwise circle lies to the left of the target direction. When offset is positive,
the left hand circle will be generated - when it is negative the right hand circle is generated.
T <-- Target position
^
Clockwise circles with this center | Clockwise circles with this center will have
will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
\ | /
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
|
C <-- Current position
*/
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
// even though it is advised against ever generating such circles in a single line of g-code. By
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
// travel and thus we get the unadvisably long arcs as prescribed.
if (gc_block.values.r < 0) {
h_x2_div_d = -h_x2_div_d;
gc_block.values.r = -gc_block.values.r; // Finished with r. Set to positive for mc_arc
}
// Complete the operation by calculating the actual center of the arc
gc_block.values.ijk[axis_0] = 0.5*(x-(y*h_x2_div_d));
gc_block.values.ijk[axis_1] = 0.5*(y+(x*h_x2_div_d));
} else { // Arc Center Format Offset Mode
if (!(ijk_words & (bit(axis_0)|bit(axis_1)))) { FAIL(STATUS_GCODE_NO_OFFSETS_IN_PLANE); } // [No offsets in plane]
bit_false(value_words,(bit(WORD_I)|bit(WORD_J)|bit(WORD_K)));
// Convert IJK values to proper units.
if (gc_block.modal.units == UNITS_MODE_INCHES) {
for (idx=0; idx<N_AXIS; idx++) { // Axes indices are consistent, so loop may be used to save flash space.
if (ijk_words & bit(idx)) { gc_block.values.ijk[idx] *= MM_PER_INCH; }
}
}
// Arc radius from center to target
x -= gc_block.values.ijk[axis_0]; // Delta x between circle center and target
y -= gc_block.values.ijk[axis_1]; // Delta y between circle center and target
float target_r = hypot_f(x,y);
// Compute arc radius for mc_arc. Defined from current location to center.
gc_block.values.r = hypot_f(gc_block.values.ijk[axis_0], gc_block.values.ijk[axis_1]);
// Compute difference between current location and target radii for final error-checks.
float delta_r = fabs(target_r-gc_block.values.r);
if (delta_r > 0.005) {
if (delta_r > 0.5) { FAIL(STATUS_GCODE_INVALID_TARGET); } // [Arc definition error] > 0.5mm
if (delta_r > (0.001*gc_block.values.r)) { FAIL(STATUS_GCODE_INVALID_TARGET); } // [Arc definition error] > 0.005mm AND 0.1% radius
}
}
break;
case MOTION_MODE_PROBE_TOWARD_NO_ERROR: case MOTION_MODE_PROBE_AWAY_NO_ERROR:
gc_parser_flags |= GC_PARSER_PROBE_IS_NO_ERROR; // No break intentional.
case MOTION_MODE_PROBE_TOWARD: case MOTION_MODE_PROBE_AWAY:
if ((gc_block.modal.motion == MOTION_MODE_PROBE_AWAY) ||
(gc_block.modal.motion == MOTION_MODE_PROBE_AWAY_NO_ERROR)) { gc_parser_flags |= GC_PARSER_PROBE_IS_AWAY; }
// [G38 Errors]: Target is same current. No axis words. Cutter compensation is enabled. Feed rate
// is undefined. Probe is triggered. NOTE: Probe check moved to probe cycle. Instead of returning
// an error, it issues an alarm to prevent further motion to the probe. It's also done there to
// allow the planner buffer to empty and move off the probe trigger before another probing cycle.
if (!axis_words) { FAIL(STATUS_GCODE_NO_AXIS_WORDS); } // [No axis words]
if (isequal_position_vector(gc_state.position, gc_block.values.xyz)) { FAIL(STATUS_GCODE_INVALID_TARGET); } // [Invalid target]
break;
}
}
}
// [21. Program flow ]: No error checks required.
// [0. Non-specific error-checks]: Complete unused value words check, i.e. IJK used when in arc
// radius mode, or axis words that aren't used in the block.
if (gc_parser_flags & GC_PARSER_JOG_MOTION) {
// Jogging only uses the F feed rate and XYZ value words. N is valid, but S and T are invalid.
bit_false(value_words,(bit(WORD_N)|bit(WORD_F)));
} else {
bit_false(value_words,(bit(WORD_N)|bit(WORD_F)|bit(WORD_S)|bit(WORD_T))); // Remove single-meaning value words.
}
if (axis_command) { bit_false(value_words,(bit(WORD_X)|bit(WORD_Y)|bit(WORD_Z))); } // Remove axis words.
if (value_words) { FAIL(STATUS_GCODE_UNUSED_WORDS); } // [Unused words]
/* -------------------------------------------------------------------------------------
STEP 4: EXECUTE!!
Assumes that all error-checking has been completed and no failure modes exist. We just
need to update the state and execute the block according to the order-of-execution.
*/
// Initialize planner data struct for motion blocks.
plan_line_data_t plan_data;
plan_line_data_t *pl_data = &plan_data;
memset(pl_data,0,sizeof(plan_line_data_t)); // Zero pl_data struct
// Intercept jog commands and complete error checking for valid jog commands and execute.
// NOTE: G-code parser state is not updated, except the position to ensure sequential jog
// targets are computed correctly. The final parser position after a jog is updated in
// protocol_execute_realtime() when jogging completes or is canceled.
if (gc_parser_flags & GC_PARSER_JOG_MOTION) {
// Only distance and unit modal commands and G53 absolute override command are allowed.
// NOTE: Feed rate word and axis word checks have already been performed in STEP 3.
if (command_words & ~(bit(MODAL_GROUP_G3) | bit(MODAL_GROUP_G6 | bit(MODAL_GROUP_G0))) ) { FAIL(STATUS_INVALID_JOG_COMMAND) };
if (!(gc_block.non_modal_command == NON_MODAL_ABSOLUTE_OVERRIDE || gc_block.non_modal_command == NON_MODAL_NO_ACTION)) { FAIL(STATUS_INVALID_JOG_COMMAND); }
// Initialize planner data to current spindle and coolant modal state.
pl_data->spindle_speed = gc_state.spindle_speed;
plan_data.condition = (gc_state.modal.spindle | gc_state.modal.coolant);
uint8_t status = jog_execute(&plan_data, &gc_block);
if (status == STATUS_OK) { memcpy(gc_state.position, gc_block.values.xyz, sizeof(gc_block.values.xyz)); }
return(status);
}
// If in laser mode, setup laser power based on current and past parser conditions.
if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) {
if ( !((gc_block.modal.motion == MOTION_MODE_LINEAR) || (gc_block.modal.motion == MOTION_MODE_CW_ARC)
|| (gc_block.modal.motion == MOTION_MODE_CCW_ARC)) ) {
gc_parser_flags |= GC_PARSER_LASER_DISABLE;
}
// Any motion mode with axis words is allowed to be passed from a spindle speed update.
// NOTE: G1 and G0 without axis words sets axis_command to none. G28/30 are intentionally omitted.
// TODO: Check sync conditions for M3 enabled motions that don't enter the planner. (zero length).
if (axis_words && (axis_command == AXIS_COMMAND_MOTION_MODE)) {
gc_parser_flags |= GC_PARSER_LASER_ISMOTION;
} else {
// M3 constant power laser requires planner syncs to update the laser when changing between
// a G1/2/3 motion mode state and vice versa when there is no motion in the line.
if (gc_state.modal.spindle == SPINDLE_ENABLE_CW) {
if ((gc_state.modal.motion == MOTION_MODE_LINEAR) || (gc_state.modal.motion == MOTION_MODE_CW_ARC)
|| (gc_state.modal.motion == MOTION_MODE_CCW_ARC)) {
if (bit_istrue(gc_parser_flags,GC_PARSER_LASER_DISABLE)) {
gc_parser_flags |= GC_PARSER_LASER_FORCE_SYNC; // Change from G1/2/3 motion mode.
}
} else {
// When changing to a G1 motion mode without axis words from a non-G1/2/3 motion mode.
if (bit_isfalse(gc_parser_flags,GC_PARSER_LASER_DISABLE)) {
gc_parser_flags |= GC_PARSER_LASER_FORCE_SYNC;
}
}
}
}
}
// [0. Non-specific/common error-checks and miscellaneous setup]:
// NOTE: If no line number is present, the value is zero.
gc_state.line_number = gc_block.values.n;
#ifdef USE_LINE_NUMBERS
pl_data->line_number = gc_state.line_number; // Record data for planner use.
#endif
// [1. Comments feedback ]: NOT SUPPORTED
// [2. Set feed rate mode ]:
gc_state.modal.feed_rate = gc_block.modal.feed_rate;
if (gc_state.modal.feed_rate) { pl_data->condition |= PL_COND_FLAG_INVERSE_TIME; } // Set condition flag for planner use.
// [3. Set feed rate ]:
gc_state.feed_rate = gc_block.values.f; // Always copy this value. See feed rate error-checking.
pl_data->feed_rate = gc_state.feed_rate; // Record data for planner use.
// [4. Set spindle speed ]:
if ((gc_state.spindle_speed != gc_block.values.s) || bit_istrue(gc_parser_flags,GC_PARSER_LASER_FORCE_SYNC)) {
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
#ifdef VARIABLE_SPINDLE
if (bit_isfalse(gc_parser_flags,GC_PARSER_LASER_ISMOTION)) {
if (bit_istrue(gc_parser_flags,GC_PARSER_LASER_DISABLE)) {
spindle_sync(gc_state.modal.spindle, 0.0);
} else { spindle_sync(gc_state.modal.spindle, gc_block.values.s); }
}
#else
spindle_sync(gc_state.modal.spindle, 0.0);
#endif
}
gc_state.spindle_speed = gc_block.values.s; // Update spindle speed state.
}
// NOTE: Pass zero spindle speed for all restricted laser motions.
if (bit_isfalse(gc_parser_flags,GC_PARSER_LASER_DISABLE)) {
pl_data->spindle_speed = gc_state.spindle_speed; // Record data for planner use.
} // else { pl_data->spindle_speed = 0.0; } // Initialized as zero already.
// [5. Select tool ]: NOT SUPPORTED. Only tracks tool value.
gc_state.tool = gc_block.values.t;
// [6. Change tool ]: NOT SUPPORTED
// [7. Spindle control ]:
if (gc_state.modal.spindle != gc_block.modal.spindle) {
// Update spindle control and apply spindle speed when enabling it in this block.
// NOTE: All spindle state changes are synced, even in laser mode. Also, pl_data,
// rather than gc_state, is used to manage laser state for non-laser motions.
spindle_sync(gc_block.modal.spindle, pl_data->spindle_speed);
gc_state.modal.spindle = gc_block.modal.spindle;
}
pl_data->condition |= gc_state.modal.spindle; // Set condition flag for planner use.
// [8. Coolant control ]:
if (gc_state.modal.coolant != gc_block.modal.coolant) {
// NOTE: Coolant M-codes are modal. Only one command per line is allowed. But, multiple states
// can exist at the same time, while coolant disable clears all states.
coolant_sync(gc_block.modal.coolant);
if (gc_block.modal.coolant == COOLANT_DISABLE) { gc_state.modal.coolant = COOLANT_DISABLE; }
else { gc_state.modal.coolant |= gc_block.modal.coolant; }
}
pl_data->condition |= gc_state.modal.coolant; // Set condition flag for planner use.
// [9. Override control ]: NOT SUPPORTED. Always enabled. Except for a Grbl-only parking control.
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
if (gc_state.modal.override != gc_block.modal.override) {
gc_state.modal.override = gc_block.modal.override;
mc_override_ctrl_update(gc_state.modal.override);
}
#endif
// [10. Dwell ]:
if (gc_block.non_modal_command == NON_MODAL_DWELL) { mc_dwell(gc_block.values.p); }
// [11. Set active plane ]:
gc_state.modal.plane_select = gc_block.modal.plane_select;
// [12. Set length units ]:
gc_state.modal.units = gc_block.modal.units;
// [13. Cutter radius compensation ]: G41/42 NOT SUPPORTED
// gc_state.modal.cutter_comp = gc_block.modal.cutter_comp; // NOTE: Not needed since always disabled.
// [14. Cutter length compensation ]: G43.1 and G49 supported. G43 NOT SUPPORTED.
// NOTE: If G43 were supported, its operation wouldn't be any different from G43.1 in terms
// of execution. The error-checking step would simply load the offset value into the correct
// axis of the block XYZ value array.
if (axis_command == AXIS_COMMAND_TOOL_LENGTH_OFFSET ) { // Indicates a change.
gc_state.modal.tool_length = gc_block.modal.tool_length;
if (gc_state.modal.tool_length == TOOL_LENGTH_OFFSET_CANCEL) { // G49
gc_block.values.xyz[TOOL_LENGTH_OFFSET_AXIS] = 0.0;
} // else G43.1
if ( gc_state.tool_length_offset != gc_block.values.xyz[TOOL_LENGTH_OFFSET_AXIS] ) {
gc_state.tool_length_offset = gc_block.values.xyz[TOOL_LENGTH_OFFSET_AXIS];
system_flag_wco_change();
}
}
// [15. Coordinate system selection ]:
if (gc_state.modal.coord_select != gc_block.modal.coord_select) {
gc_state.modal.coord_select = gc_block.modal.coord_select;
memcpy(gc_state.coord_system,block_coord_system,N_AXIS*sizeof(float));
system_flag_wco_change();