forked from bdring/Grbl_HBot_midTbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
protocol.c
768 lines (667 loc) · 37.3 KB
/
protocol.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
/*
protocol.c - controls Grbl execution protocol and procedures
Part of Grbl
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
// Define line flags. Includes comment type tracking and line overflow detection.
#define LINE_FLAG_OVERFLOW bit(0)
#define LINE_FLAG_COMMENT_PARENTHESES bit(1)
#define LINE_FLAG_COMMENT_SEMICOLON bit(2)
static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated.
static void protocol_exec_rt_suspend();
/*
GRBL PRIMARY LOOP:
*/
void protocol_main_loop()
{
// Perform some machine checks to make sure everything is good to go.
#ifdef CHECK_LIMITS_AT_INIT
if (bit_istrue(settings.flags, BITFLAG_HARD_LIMIT_ENABLE)) {
if (limits_get_state()) {
sys.state = STATE_ALARM; // Ensure alarm state is active.
report_feedback_message(MESSAGE_CHECK_LIMITS);
}
}
#endif
// Check for and report alarm state after a reset, error, or an initial power up.
// NOTE: Sleep mode disables the stepper drivers and position can't be guaranteed.
// Re-initialize the sleep state as an ALARM mode to ensure user homes or acknowledges.
if (sys.state & (STATE_ALARM | STATE_SLEEP)) {
report_feedback_message(MESSAGE_ALARM_LOCK);
sys.state = STATE_ALARM; // Ensure alarm state is set.
} else {
// Check if the safety door is open.
sys.state = STATE_IDLE;
if (system_check_safety_door_ajar()) {
bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
protocol_execute_realtime(); // Enter safety door mode. Should return as IDLE state.
}
// All systems go!
system_execute_startup(line); // Execute startup script.
}
// ---------------------------------------------------------------------------------
// Primary loop! Upon a system abort, this exits back to main() to reset the system.
// This is also where Grbl idles while waiting for something to do.
// ---------------------------------------------------------------------------------
uint8_t line_flags = 0;
uint8_t char_counter = 0;
uint8_t c;
for (;;) {
// Process one line of incoming serial data, as the data becomes available. Performs an
// initial filtering by removing spaces and comments and capitalizing all letters.
while((c = serial_read()) != SERIAL_NO_DATA) {
if ((c == '\n') || (c == '\r')) { // End of line reached
protocol_execute_realtime(); // Runtime command check point.
if (sys.abort) { return; } // Bail to calling function upon system abort
line[char_counter] = 0; // Set string termination character.
#ifdef REPORT_ECHO_LINE_RECEIVED
report_echo_line_received(line);
#endif
// Direct and execute one line of formatted input, and report status of execution.
if (line_flags & LINE_FLAG_OVERFLOW) {
// Report line overflow error.
report_status_message(STATUS_OVERFLOW);
} else if (line[0] == 0) {
// Empty or comment line. For syncing purposes.
report_status_message(STATUS_OK);
} else if (line[0] == '$') {
// Grbl '$' system command
report_status_message(system_execute_line(line));
} else if (sys.state & (STATE_ALARM | STATE_JOG)) {
// Everything else is gcode. Block if in alarm or jog mode.
report_status_message(STATUS_SYSTEM_GC_LOCK);
} else {
// Parse and execute g-code block.
report_status_message(gc_execute_line(line));
}
// Reset tracking data for next line.
line_flags = 0;
char_counter = 0;
} else {
if (line_flags) {
// Throw away all (except EOL) comment characters and overflow characters.
if (c == ')') {
// End of '()' comment. Resume line allowed.
if (line_flags & LINE_FLAG_COMMENT_PARENTHESES) { line_flags &= ~(LINE_FLAG_COMMENT_PARENTHESES); }
}
} else {
if (c <= ' ') {
// Throw away whitepace and control characters
} else if (c == '/') {
// Block delete NOT SUPPORTED. Ignore character.
// NOTE: If supported, would simply need to check the system if block delete is enabled.
} else if (c == '(') {
// Enable comments flag and ignore all characters until ')' or EOL.
// NOTE: This doesn't follow the NIST definition exactly, but is good enough for now.
// In the future, we could simply remove the items within the comments, but retain the
// comment control characters, so that the g-code parser can error-check it.
line_flags |= LINE_FLAG_COMMENT_PARENTHESES;
} else if (c == ';') {
// NOTE: ';' comment to EOL is a LinuxCNC definition. Not NIST.
line_flags |= LINE_FLAG_COMMENT_SEMICOLON;
// TODO: Install '%' feature
// } else if (c == '%') {
// Program start-end percent sign NOT SUPPORTED.
// NOTE: This maybe installed to tell Grbl when a program is running vs manual input,
// where, during a program, the system auto-cycle start will continue to execute
// everything until the next '%' sign. This will help fix resuming issues with certain
// functions that empty the planner buffer to execute its task on-time.
} else if (char_counter >= (LINE_BUFFER_SIZE-1)) {
// Detect line buffer overflow and set flag.
line_flags |= LINE_FLAG_OVERFLOW;
} else if (c >= 'a' && c <= 'z') { // Upcase lowercase
line[char_counter++] = c-'a'+'A';
} else {
line[char_counter++] = c;
}
}
}
}
// If there are no more characters in the serial read buffer to be processed and executed,
// this indicates that g-code streaming has either filled the planner buffer or has
// completed. In either case, auto-cycle start, if enabled, any queued moves.
protocol_auto_cycle_start();
protocol_execute_realtime(); // Runtime command check point.
if (sys.abort) { return; } // Bail to main() program loop to reset system.
}
return; /* Never reached */
}
// Block until all buffered steps are executed or in a cycle state. Works with feed hold
// during a synchronize call, if it should happen. Also, waits for clean cycle end.
void protocol_buffer_synchronize()
{
// If system is queued, ensure cycle resumes if the auto start flag is present.
protocol_auto_cycle_start();
do {
protocol_execute_realtime(); // Check and execute run-time commands
if (sys.abort) { return; } // Check for system abort
} while (plan_get_current_block() || (sys.state == STATE_CYCLE));
}
// Auto-cycle start triggers when there is a motion ready to execute and if the main program is not
// actively parsing commands.
// NOTE: This function is called from the main loop, buffer sync, and mc_line() only and executes
// when one of these conditions exist respectively: There are no more blocks sent (i.e. streaming
// is finished, single commands), a command that needs to wait for the motions in the buffer to
// execute calls a buffer sync, or the planner buffer is full and ready to go.
void protocol_auto_cycle_start()
{
if (plan_get_current_block() != NULL) { // Check if there are any blocks in the buffer.
system_set_exec_state_flag(EXEC_CYCLE_START); // If so, execute them!
}
}
// This function is the general interface to Grbl's real-time command execution system. It is called
// from various check points in the main program, primarily where there may be a while loop waiting
// for a buffer to clear space or any point where the execution time from the last check point may
// be more than a fraction of a second. This is a way to execute realtime commands asynchronously
// (aka multitasking) with grbl's g-code parsing and planning functions. This function also serves
// as an interface for the interrupts to set the system realtime flags, where only the main program
// handles them, removing the need to define more computationally-expensive volatile variables. This
// also provides a controlled way to execute certain tasks without having two or more instances of
// the same task, such as the planner recalculating the buffer upon a feedhold or overrides.
// NOTE: The sys_rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts,
// limit switches, or the main program.
void protocol_execute_realtime()
{
protocol_exec_rt_system();
if (sys.suspend) { protocol_exec_rt_suspend(); }
}
// Executes run-time commands, when required. This function primarily operates as Grbl's state
// machine and controls the various real-time features Grbl has to offer.
// NOTE: Do not alter this unless you know exactly what you are doing!
void protocol_exec_rt_system()
{
uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times.
rt_exec = sys_rt_exec_alarm; // Copy volatile sys_rt_exec_alarm.
if (rt_exec) { // Enter only if any bit flag is true
// System alarm. Everything has shutdown by something that has gone severely wrong. Report
// the source of the error to the user. If critical, Grbl disables by entering an infinite
// loop until system reset/abort.
sys.state = STATE_ALARM; // Set system alarm state
report_alarm_message(rt_exec);
// Halt everything upon a critical event flag. Currently hard and soft limits flag this.
if ((rt_exec == EXEC_ALARM_HARD_LIMIT) || (rt_exec == EXEC_ALARM_SOFT_LIMIT)) {
report_feedback_message(MESSAGE_CRITICAL_EVENT);
system_clear_exec_state_flag(EXEC_RESET); // Disable any existing reset
do {
// Block everything, except reset and status reports, until user issues reset or power
// cycles. Hard limits typically occur while unattended or not paying attention. Gives
// the user and a GUI time to do what is needed before resetting, like killing the
// incoming stream. The same could be said about soft limits. While the position is not
// lost, continued streaming could cause a serious crash if by chance it gets executed.
} while (bit_isfalse(sys_rt_exec_state,EXEC_RESET));
}
system_clear_exec_alarm(); // Clear alarm
}
rt_exec = sys_rt_exec_state; // Copy volatile sys_rt_exec_state.
if (rt_exec) {
// Execute system abort.
if (rt_exec & EXEC_RESET) {
sys.abort = true; // Only place this is set true.
return; // Nothing else to do but exit.
}
// Execute and serial print status
if (rt_exec & EXEC_STATUS_REPORT) {
report_realtime_status();
system_clear_exec_state_flag(EXEC_STATUS_REPORT);
}
// NOTE: Once hold is initiated, the system immediately enters a suspend state to block all
// main program processes until either reset or resumed. This ensures a hold completes safely.
if (rt_exec & (EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP)) {
// State check for allowable states for hold methods.
if (!(sys.state & (STATE_ALARM | STATE_CHECK_MODE))) {
// If in CYCLE or JOG states, immediately initiate a motion HOLD.
if (sys.state & (STATE_CYCLE | STATE_JOG)) {
if (!(sys.suspend & (SUSPEND_MOTION_CANCEL | SUSPEND_JOG_CANCEL))) { // Block, if already holding.
st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration.
sys.step_control = STEP_CONTROL_EXECUTE_HOLD; // Initiate suspend state with active flag.
if (sys.state == STATE_JOG) { // Jog cancelled upon any hold event, except for sleeping.
if (!(rt_exec & EXEC_SLEEP)) { sys.suspend |= SUSPEND_JOG_CANCEL; }
}
}
}
// If IDLE, Grbl is not in motion. Simply indicate suspend state and hold is complete.
if (sys.state == STATE_IDLE) { sys.suspend = SUSPEND_HOLD_COMPLETE; }
// Execute and flag a motion cancel with deceleration and return to idle. Used primarily by probing cycle
// to halt and cancel the remainder of the motion.
if (rt_exec & EXEC_MOTION_CANCEL) {
// MOTION_CANCEL only occurs during a CYCLE, but a HOLD and SAFETY_DOOR may been initiated beforehand
// to hold the CYCLE. Motion cancel is valid for a single planner block motion only, while jog cancel
// will handle and clear multiple planner block motions.
if (!(sys.state & STATE_JOG)) { sys.suspend |= SUSPEND_MOTION_CANCEL; } // NOTE: State is STATE_CYCLE.
}
// Execute a feed hold with deceleration, if required. Then, suspend system.
if (rt_exec & EXEC_FEED_HOLD) {
// Block SAFETY_DOOR, JOG, and SLEEP states from changing to HOLD state.
if (!(sys.state & (STATE_SAFETY_DOOR | STATE_JOG | STATE_SLEEP))) { sys.state = STATE_HOLD; }
}
// Execute a safety door stop with a feed hold and disable spindle/coolant.
// NOTE: Safety door differs from feed holds by stopping everything no matter state, disables powered
// devices (spindle/coolant), and blocks resuming until switch is re-engaged.
if (rt_exec & EXEC_SAFETY_DOOR) {
report_feedback_message(MESSAGE_SAFETY_DOOR_AJAR);
// If jogging, block safety door methods until jog cancel is complete. Just flag that it happened.
if (!(sys.suspend & SUSPEND_JOG_CANCEL)) {
// Check if the safety re-opened during a restore parking motion only. Ignore if
// already retracting, parked or in sleep state.
if (sys.state == STATE_SAFETY_DOOR) {
if (sys.suspend & SUSPEND_INITIATE_RESTORE) { // Actively restoring
#ifdef PARKING_ENABLE
// Set hold and reset appropriate control flags to restart parking sequence.
if (sys.step_control & STEP_CONTROL_EXECUTE_SYS_MOTION) {
st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration.
sys.step_control = (STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION);
sys.suspend &= ~(SUSPEND_HOLD_COMPLETE);
} // else NO_MOTION is active.
#endif
sys.suspend &= ~(SUSPEND_RETRACT_COMPLETE | SUSPEND_INITIATE_RESTORE | SUSPEND_RESTORE_COMPLETE);
sys.suspend |= SUSPEND_RESTART_RETRACT;
}
}
if (sys.state != STATE_SLEEP) { sys.state = STATE_SAFETY_DOOR; }
}
// NOTE: This flag doesn't change when the door closes, unlike sys.state. Ensures any parking motions
// are executed if the door switch closes and the state returns to HOLD.
sys.suspend |= SUSPEND_SAFETY_DOOR_AJAR;
}
}
if (rt_exec & EXEC_SLEEP) {
if (sys.state == STATE_ALARM) { sys.suspend |= (SUSPEND_RETRACT_COMPLETE|SUSPEND_HOLD_COMPLETE); }
sys.state = STATE_SLEEP;
}
system_clear_exec_state_flag((EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP));
}
// Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue.
if (rt_exec & EXEC_CYCLE_START) {
// Block if called at same time as the hold commands: feed hold, motion cancel, and safety door.
// Ensures auto-cycle-start doesn't resume a hold without an explicit user-input.
if (!(rt_exec & (EXEC_FEED_HOLD | EXEC_MOTION_CANCEL | EXEC_SAFETY_DOOR))) {
// Resume door state when parking motion has retracted and door has been closed.
if ((sys.state == STATE_SAFETY_DOOR) && !(sys.suspend & SUSPEND_SAFETY_DOOR_AJAR)) {
if (sys.suspend & SUSPEND_RESTORE_COMPLETE) {
sys.state = STATE_IDLE; // Set to IDLE to immediately resume the cycle.
} else if (sys.suspend & SUSPEND_RETRACT_COMPLETE) {
// Flag to re-energize powered components and restore original position, if disabled by SAFETY_DOOR.
// NOTE: For a safety door to resume, the switch must be closed, as indicated by HOLD state, and
// the retraction execution is complete, which implies the initial feed hold is not active. To
// restore normal operation, the restore procedures must be initiated by the following flag. Once,
// they are complete, it will call CYCLE_START automatically to resume and exit the suspend.
sys.suspend |= SUSPEND_INITIATE_RESTORE;
}
}
// Cycle start only when IDLE or when a hold is complete and ready to resume.
if ((sys.state == STATE_IDLE) || ((sys.state & STATE_HOLD) && (sys.suspend & SUSPEND_HOLD_COMPLETE))) {
if (sys.state == STATE_HOLD && sys.spindle_stop_ovr) {
sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE_CYCLE; // Set to restore in suspend routine and cycle start after.
} else {
// Start cycle only if queued motions exist in planner buffer and the motion is not canceled.
sys.step_control = STEP_CONTROL_NORMAL_OP; // Restore step control to normal operation
if (plan_get_current_block() && bit_isfalse(sys.suspend,SUSPEND_MOTION_CANCEL)) {
sys.suspend = SUSPEND_DISABLE; // Break suspend state.
sys.state = STATE_CYCLE;
st_prep_buffer(); // Initialize step segment buffer before beginning cycle.
st_wake_up();
} else { // Otherwise, do nothing. Set and resume IDLE state.
sys.suspend = SUSPEND_DISABLE; // Break suspend state.
sys.state = STATE_IDLE;
}
}
}
}
system_clear_exec_state_flag(EXEC_CYCLE_START);
}
if (rt_exec & EXEC_CYCLE_STOP) {
// Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by
// realtime command execution in the main program, ensuring that the planner re-plans safely.
// NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper
// cycle reinitializations. The stepper path should continue exactly as if nothing has happened.
// NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes.
if ((sys.state & (STATE_HOLD|STATE_SAFETY_DOOR|STATE_SLEEP)) && !(sys.soft_limit) && !(sys.suspend & SUSPEND_JOG_CANCEL)) {
// Hold complete. Set to indicate ready to resume. Remain in HOLD or DOOR states until user
// has issued a resume command or reset.
plan_cycle_reinitialize();
if (sys.step_control & STEP_CONTROL_EXECUTE_HOLD) { sys.suspend |= SUSPEND_HOLD_COMPLETE; }
bit_false(sys.step_control,(STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION));
} else {
// Motion complete. Includes CYCLE/JOG/HOMING states and jog cancel/motion cancel/soft limit events.
// NOTE: Motion and jog cancel both immediately return to idle after the hold completes.
if (sys.suspend & SUSPEND_JOG_CANCEL) { // For jog cancel, flush buffers and sync positions.
sys.step_control = STEP_CONTROL_NORMAL_OP;
plan_reset();
st_reset();
gc_sync_position();
plan_sync_position();
}
if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) { // Only occurs when safety door opens during jog.
sys.suspend &= ~(SUSPEND_JOG_CANCEL);
sys.suspend |= SUSPEND_HOLD_COMPLETE;
sys.state = STATE_SAFETY_DOOR;
} else {
sys.suspend = SUSPEND_DISABLE;
sys.state = STATE_IDLE;
}
}
system_clear_exec_state_flag(EXEC_CYCLE_STOP);
}
}
// Execute overrides.
rt_exec = sys_rt_exec_motion_override; // Copy volatile sys_rt_exec_motion_override
if (rt_exec) {
system_clear_exec_motion_overrides(); // Clear all motion override flags.
uint8_t new_f_override = sys.f_override;
if (rt_exec & EXEC_FEED_OVR_RESET) { new_f_override = DEFAULT_FEED_OVERRIDE; }
if (rt_exec & EXEC_FEED_OVR_COARSE_PLUS) { new_f_override += FEED_OVERRIDE_COARSE_INCREMENT; }
if (rt_exec & EXEC_FEED_OVR_COARSE_MINUS) { new_f_override -= FEED_OVERRIDE_COARSE_INCREMENT; }
if (rt_exec & EXEC_FEED_OVR_FINE_PLUS) { new_f_override += FEED_OVERRIDE_FINE_INCREMENT; }
if (rt_exec & EXEC_FEED_OVR_FINE_MINUS) { new_f_override -= FEED_OVERRIDE_FINE_INCREMENT; }
new_f_override = min(new_f_override,MAX_FEED_RATE_OVERRIDE);
new_f_override = max(new_f_override,MIN_FEED_RATE_OVERRIDE);
uint8_t new_r_override = sys.r_override;
if (rt_exec & EXEC_RAPID_OVR_RESET) { new_r_override = DEFAULT_RAPID_OVERRIDE; }
if (rt_exec & EXEC_RAPID_OVR_MEDIUM) { new_r_override = RAPID_OVERRIDE_MEDIUM; }
if (rt_exec & EXEC_RAPID_OVR_LOW) { new_r_override = RAPID_OVERRIDE_LOW; }
if ((new_f_override != sys.f_override) || (new_r_override != sys.r_override)) {
sys.f_override = new_f_override;
sys.r_override = new_r_override;
sys.report_ovr_counter = 0; // Set to report change immediately
plan_update_velocity_profile_parameters();
plan_cycle_reinitialize();
}
}
rt_exec = sys_rt_exec_accessory_override;
if (rt_exec) {
system_clear_exec_accessory_overrides(); // Clear all accessory override flags.
// NOTE: Unlike motion overrides, spindle overrides do not require a planner reinitialization.
uint8_t last_s_override = sys.spindle_speed_ovr;
if (rt_exec & EXEC_SPINDLE_OVR_RESET) { last_s_override = DEFAULT_SPINDLE_SPEED_OVERRIDE; }
if (rt_exec & EXEC_SPINDLE_OVR_COARSE_PLUS) { last_s_override += SPINDLE_OVERRIDE_COARSE_INCREMENT; }
if (rt_exec & EXEC_SPINDLE_OVR_COARSE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_COARSE_INCREMENT; }
if (rt_exec & EXEC_SPINDLE_OVR_FINE_PLUS) { last_s_override += SPINDLE_OVERRIDE_FINE_INCREMENT; }
if (rt_exec & EXEC_SPINDLE_OVR_FINE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_FINE_INCREMENT; }
last_s_override = min(last_s_override,MAX_SPINDLE_SPEED_OVERRIDE);
last_s_override = max(last_s_override,MIN_SPINDLE_SPEED_OVERRIDE);
if (last_s_override != sys.spindle_speed_ovr) {
bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM);
sys.spindle_speed_ovr = last_s_override;
sys.report_ovr_counter = 0; // Set to report change immediately
}
if (rt_exec & EXEC_SPINDLE_OVR_STOP) {
// Spindle stop override allowed only while in HOLD state.
// NOTE: Report counters are set in spindle_set_state() when spindle stop is executed.
if (sys.state == STATE_HOLD) {
if (!(sys.spindle_stop_ovr)) { sys.spindle_stop_ovr = SPINDLE_STOP_OVR_INITIATE; }
else if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_ENABLED) { sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE; }
}
}
// NOTE: Since coolant state always performs a planner sync whenever it changes, the current
// run state can be determined by checking the parser state.
if (rt_exec & (EXEC_COOLANT_FLOOD_OVR_TOGGLE | EXEC_COOLANT_MIST_OVR_TOGGLE)) {
if ((sys.state == STATE_IDLE) || (sys.state & (STATE_CYCLE | STATE_HOLD))) {
uint8_t coolant_state = gc_state.modal.coolant;
#ifdef ENABLE_M7
if (rt_exec & EXEC_COOLANT_MIST_OVR_TOGGLE) {
if (coolant_state & COOLANT_MIST_ENABLE) { bit_false(coolant_state,COOLANT_MIST_ENABLE); }
else { coolant_state |= COOLANT_MIST_ENABLE; }
}
if (rt_exec & EXEC_COOLANT_FLOOD_OVR_TOGGLE) {
if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); }
else { coolant_state |= COOLANT_FLOOD_ENABLE; }
}
#else
if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); }
else { coolant_state |= COOLANT_FLOOD_ENABLE; }
#endif
coolant_set_state(coolant_state); // Report counter set in coolant_set_state().
gc_state.modal.coolant = coolant_state;
}
}
}
#ifdef DEBUG
if (sys_rt_exec_debug) {
report_realtime_debug();
sys_rt_exec_debug = 0;
}
#endif
// Reload step segment buffer
if (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_SAFETY_DOOR | STATE_HOMING | STATE_SLEEP| STATE_JOG)) {
st_prep_buffer();
}
}
// Handles Grbl system suspend procedures, such as feed hold, safety door, and parking motion.
// The system will enter this loop, create local variables for suspend tasks, and return to
// whatever function that invoked the suspend, such that Grbl resumes normal operation.
// This function is written in a way to promote custom parking motions. Simply use this as a
// template
static void protocol_exec_rt_suspend()
{
#ifdef PARKING_ENABLE
// Declare and initialize parking local variables
float restore_target[N_AXIS];
float parking_target[N_AXIS];
float retract_waypoint = PARKING_PULLOUT_INCREMENT;
plan_line_data_t plan_data;
plan_line_data_t *pl_data = &plan_data;
memset(pl_data,0,sizeof(plan_line_data_t));
pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE);
#ifdef USE_LINE_NUMBERS
pl_data->line_number = PARKING_MOTION_LINE_NUMBER;
#endif
#endif
plan_block_t *block = plan_get_current_block();
uint8_t restore_condition;
#ifdef VARIABLE_SPINDLE
float restore_spindle_speed;
if (block == NULL) {
restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant);
restore_spindle_speed = gc_state.spindle_speed;
} else {
restore_condition = block->condition;
restore_spindle_speed = block->spindle_speed;
}
#ifdef DISABLE_LASER_DURING_HOLD
if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) {
system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_STOP);
}
#endif
#else
if (block == NULL) { restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant); }
else { restore_condition = block->condition; }
#endif
while (sys.suspend) {
if (sys.abort) { return; }
// Block until initial hold is complete and the machine has stopped motion.
if (sys.suspend & SUSPEND_HOLD_COMPLETE) {
// Parking manager. Handles de/re-energizing, switch state checks, and parking motions for
// the safety door and sleep states.
if (sys.state & (STATE_SAFETY_DOOR | STATE_SLEEP)) {
// Handles retraction motions and de-energizing.
if (bit_isfalse(sys.suspend,SUSPEND_RETRACT_COMPLETE)) {
// Ensure any prior spindle stop override is disabled at start of safety door routine.
sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED;
#ifndef PARKING_ENABLE
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
coolant_set_state(COOLANT_DISABLE); // De-energize
#else
// Get current position and store restore location and spindle retract waypoint.
system_convert_array_steps_to_mpos(parking_target,sys_position);
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
memcpy(restore_target,parking_target,sizeof(parking_target));
retract_waypoint += restore_target[PARKING_AXIS];
retract_waypoint = min(retract_waypoint,PARKING_TARGET);
}
// Execute slow pull-out parking retract motion. Parking requires homing enabled, the
// current location not exceeding the parking target location, and laser mode disabled.
// NOTE: State is will remain DOOR, until the de-energizing and retract is complete.
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
if ((bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) &&
(parking_target[PARKING_AXIS] < PARKING_TARGET) &&
bit_isfalse(settings.flags,BITFLAG_LASER_MODE) &&
(sys.override_ctrl == OVERRIDE_PARKING_MOTION)) {
#else
if ((bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) &&
(parking_target[PARKING_AXIS] < PARKING_TARGET) &&
bit_isfalse(settings.flags,BITFLAG_LASER_MODE)) {
#endif
// Retract spindle by pullout distance. Ensure retraction motion moves away from
// the workpiece and waypoint motion doesn't exceed the parking target location.
if (parking_target[PARKING_AXIS] < retract_waypoint) {
parking_target[PARKING_AXIS] = retract_waypoint;
pl_data->feed_rate = PARKING_PULLOUT_RATE;
pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Retain accessory state
pl_data->spindle_speed = restore_spindle_speed;
mc_parking_motion(parking_target, pl_data);
}
// NOTE: Clear accessory state after retract and after an aborted restore motion.
pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE);
pl_data->spindle_speed = 0.0;
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
coolant_set_state(COOLANT_DISABLE); // De-energize
// Execute fast parking retract motion to parking target location.
if (parking_target[PARKING_AXIS] < PARKING_TARGET) {
parking_target[PARKING_AXIS] = PARKING_TARGET;
pl_data->feed_rate = PARKING_RATE;
mc_parking_motion(parking_target, pl_data);
}
} else {
// Parking motion not possible. Just disable the spindle and coolant.
// NOTE: Laser mode does not start a parking motion to ensure the laser stops immediately.
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
coolant_set_state(COOLANT_DISABLE); // De-energize
}
#endif
sys.suspend &= ~(SUSPEND_RESTART_RETRACT);
sys.suspend |= SUSPEND_RETRACT_COMPLETE;
} else {
if (sys.state == STATE_SLEEP) {
report_feedback_message(MESSAGE_SLEEP_MODE);
// Spindle and coolant should already be stopped, but do it again just to be sure.
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
coolant_set_state(COOLANT_DISABLE); // De-energize
st_go_idle(); // Disable steppers
while (!(sys.abort)) { protocol_exec_rt_system(); } // Do nothing until reset.
return; // Abort received. Return to re-initialize.
}
// Allows resuming from parking/safety door. Actively checks if safety door is closed and ready to resume.
if (sys.state == STATE_SAFETY_DOOR) {
if (!(system_check_safety_door_ajar())) {
sys.suspend &= ~(SUSPEND_SAFETY_DOOR_AJAR); // Reset door ajar flag to denote ready to resume.
}
}
// Handles parking restore and safety door resume.
if (sys.suspend & SUSPEND_INITIATE_RESTORE) {
#ifdef PARKING_ENABLE
// Execute fast restore motion to the pull-out position. Parking requires homing enabled.
// NOTE: State is will remain DOOR, until the de-energizing and retract is complete.
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
if (((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) &&
(sys.override_ctrl == OVERRIDE_PARKING_MOTION)) {
#else
if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) {
#endif
// Check to ensure the motion doesn't move below pull-out position.
if (parking_target[PARKING_AXIS] <= PARKING_TARGET) {
parking_target[PARKING_AXIS] = retract_waypoint;
pl_data->feed_rate = PARKING_RATE;
mc_parking_motion(parking_target, pl_data);
}
}
#endif
// Delayed Tasks: Restart spindle and coolant, delay to power-up, then resume cycle.
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
// Block if safety door re-opened during prior restore actions.
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) {
// When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts.
bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM);
} else {
spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed);
delay_sec(SAFETY_DOOR_SPINDLE_DELAY, DELAY_MODE_SYS_SUSPEND);
}
}
}
if (gc_state.modal.coolant != COOLANT_DISABLE) {
// Block if safety door re-opened during prior restore actions.
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
// NOTE: Laser mode will honor this delay. An exhaust system is often controlled by this pin.
coolant_set_state((restore_condition & (PL_COND_FLAG_COOLANT_FLOOD | PL_COND_FLAG_COOLANT_FLOOD)));
delay_sec(SAFETY_DOOR_COOLANT_DELAY, DELAY_MODE_SYS_SUSPEND);
}
}
#ifdef PARKING_ENABLE
// Execute slow plunge motion from pull-out position to resume position.
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
if (((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) &&
(sys.override_ctrl == OVERRIDE_PARKING_MOTION)) {
#else
if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) {
#endif
// Block if safety door re-opened during prior restore actions.
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
// Regardless if the retract parking motion was a valid/safe motion or not, the
// restore parking motion should logically be valid, either by returning to the
// original position through valid machine space or by not moving at all.
pl_data->feed_rate = PARKING_PULLOUT_RATE;
pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Restore accessory state
pl_data->spindle_speed = restore_spindle_speed;
mc_parking_motion(restore_target, pl_data);
}
}
#endif
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
sys.suspend |= SUSPEND_RESTORE_COMPLETE;
system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program.
}
}
}
} else {
// Feed hold manager. Controls spindle stop override states.
// NOTE: Hold ensured as completed by condition check at the beginning of suspend routine.
if (sys.spindle_stop_ovr) {
// Handles beginning of spindle stop
if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_INITIATE) {
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
sys.spindle_stop_ovr = SPINDLE_STOP_OVR_ENABLED; // Set stop override state to enabled, if de-energized.
} else {
sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state
}
// Handles restoring of spindle state
} else if (sys.spindle_stop_ovr & (SPINDLE_STOP_OVR_RESTORE | SPINDLE_STOP_OVR_RESTORE_CYCLE)) {
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
report_feedback_message(MESSAGE_SPINDLE_RESTORE);
if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) {
// When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts.
bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM);
} else {
spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed);
}
}
if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_RESTORE_CYCLE) {
system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program.
}
sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state
}
} else {
// Handles spindle state during hold. NOTE: Spindle speed overrides may be altered during hold state.
// NOTE: STEP_CONTROL_UPDATE_SPINDLE_PWM is automatically reset upon resume in step generator.
if (bit_istrue(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM)) {
spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed);
bit_false(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM);
}
}
}
}
protocol_exec_rt_system();
}
}