-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
291 lines (252 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
os.environ["CUDA_VISIBLE_DEVICES"]="1"
from transformers import CLIPVisionModel, CLIPProcessor
import torch.nn as nn
import torch
import torch.utils.data as data
import os.path as osp
import cv2
import torchvision.transforms as transforms
import torch.optim as optim
from tensorboardX import SummaryWriter
import argparse
import numpy as np
import torchvision.transforms.functional as TVF
import torch.nn.functional as F
from models.unet_dual_encoder import Embedding_Adapter
from distributed import (get_rank, synchronize)
from diffusers import AutoencoderKL
from models.diffusion_model import SpaceTimeUnet
parser = argparse.ArgumentParser(description="Configuration of the training script.")
parser.add_argument("--local_rank", type=int, default=0, help="local rank for distributed training")
parser.add_argument('--dataset', default="fashion_dataset/train", help="Path to the dataset")
parser.add_argument('--dataset_vae', default="fashion_dataset_tensor", help="Path to the tensors of latent space")
parser.add_argument('--output_dir', default="checkpoint", help="Path to save the checkpoints")
args = parser.parse_args()
args = parser.parse_args()
torch.distributed.init_process_group(backend="nccl", init_method="env://")
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
synchronize()
frameLimit = 70
if get_rank() == 0:
writer = SummaryWriter('video_progress')
def cosine_beta_schedule(timesteps, start=0.0001, end=0.02):
betas = []
for i in reversed(range(timesteps)):
T = timesteps - 1
beta = start + 0.5 * (end - start) * (1 + np.cos((i / T) * np.pi))
betas.append(beta)
return torch.Tensor(betas)
def get_index_from_list(vals, t, x_shape):
batch_size = t.shape[0]
out = vals.gather(-1, t.cpu())
return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)
def forward_diffusion_sample(x_0, t):
noise = torch.randn_like(x_0)
sqrt_alphas_cumprod_t = get_index_from_list(sqrt_alphas_cumprod, t, x_0.shape)
sqrt_one_minus_alphas_cumprod_t = get_index_from_list(
sqrt_one_minus_alphas_cumprod, t, x_0.shape
)
# mean + variance
return sqrt_alphas_cumprod_t.to(device) * x_0.to(device) \
+ sqrt_one_minus_alphas_cumprod_t.to(device) * noise.to(device), noise.to(device)
T = 1000
betas = cosine_beta_schedule(timesteps=T)
# Pre-calculate different terms for closed form
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
sqrt_recip_alphas = torch.sqrt(1.0 / alphas)
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
def get_transform():
image_transforms = transforms.Compose(
[
transforms.Resize((640, 512), interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
])
return image_transforms
class VideoFrameDataset(data.Dataset):
def __init__(self):
super(VideoFrameDataset, self).__init__()
self.path = osp.join(args.dataset)
self.vae_path = osp.join(args.dataset_vae)
self.video_names = os.listdir(self.path)
self.transform = get_transform()
def __getitem__(self, index):
video_name = self.video_names[index]
inputImage = torch.load(osp.join(self.vae_path, video_name[:-4]+"_image.pt"), map_location='cpu')
restOfVideo = torch.load(osp.join(self.vae_path, video_name[:-4]+".pt"), map_location='cpu')
return {'image': inputImage, 'video': restOfVideo}
def __len__(self):
return len(self.video_names)
vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="vae",
revision="ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c"
).to(device)
vae.requires_grad_(False)
@torch.no_grad()
def VAE_encode(image):
init_latent_dist = vae.encode(image).latent_dist.sample()
init_latent_dist *= 0.18215
encoded_image = (init_latent_dist).unsqueeze(1)
return encoded_image
Net = SpaceTimeUnet(
dim = 64,
channels = 4,
dim_mult = (1, 2, 4, 8),
temporal_compression = (False, False, False, True),
self_attns = (False, False, False, True),
condition_on_timestep = True,
).to(device)
adapter = Embedding_Adapter(input_nc=1280, output_nc=1280).to(device)
clip_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32").cuda()
clip_encoder.requires_grad_(False)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
parameters = list(Net.parameters()) + list(adapter.parameters())
optimizerG = optim.AdamW(parameters, lr=0.0001, weight_decay=0.01)
Net = nn.parallel.DistributedDataParallel(
Net,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False)
adapter = nn.parallel.DistributedDataParallel(
adapter,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False)
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
train_dataset = VideoFrameDataset()
sampler = data_sampler(train_dataset, shuffle=True, distributed=True)
batch = 2
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch,
sampler=sampler,
num_workers=1,
drop_last=True)
def save_video_frames_as_mp4(frames, fps, save_path):
frame_h, frame_w = frames[0].shape[2:]
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
video = cv2.VideoWriter(save_path, fourcc, fps, (frame_w, frame_h))
frames = frames[0]
for frame in frames:
frame = np.array(TVF.to_pil_image(frame))
video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
video.release()
mseloss = torch.nn.MSELoss(reduction="mean")
def get_loss(input_image, latent_video):
timesteps = torch.randint(0, T, (batch,), device=device)
timesteps = timesteps.long()
initial_frame_latent_video = latent_video[:, 0:1].clone().detach() # [b, f, c, h, w]
x_noisy, noise = forward_diffusion_sample(latent_video, timesteps)
x_noisy[:, 0:1] = initial_frame_latent_video
noise[:, 0:1] = torch.zeros(initial_frame_latent_video.shape)
x_noisy = x_noisy.permute(0, 2, 1, 3, 4)
inputs = clip_processor(images=list(input_image), return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
clip_hidden_states = clip_encoder(**inputs).last_hidden_state.to(device)
vae_hidden_states = vae.encode(input_image).latent_dist.sample() * 0.18215
encoder_hidden_states = adapter(clip_hidden_states, vae_hidden_states)
noise_pred = Net(x_noisy, encoder_hidden_states, timestep=timesteps.float())
noise_pred = noise_pred.permute(0, 2, 1, 3, 4)
loss = 0.0
for i in range(frameLimit):
loss += mseloss(noise_pred[:, i, :, :, :], noise[:, i, :, :, :])
return loss
@torch.no_grad()
def VAE_decode(video):
decoded_video = None
for i in range(video.shape[1]):
image = video[:, i, :, :, :]
image = 1 / 0.18215 * image
if i == 0:
image = vae.decode(image).sample
image = (image / 2 + 0.5).clamp(0, 1)
decoded_video = image.unsqueeze(1)
else:
image = vae.decode(image).sample
image = (image / 2 + 0.5).clamp(0, 1)
decoded_video = torch.cat([decoded_video, image.unsqueeze(1)], 1)
return decoded_video
@torch.no_grad()
def sample_timestep(x, image, t):
betas_t = get_index_from_list(betas, t, x.shape)
sqrt_one_minus_alphas_cumprod_t = get_index_from_list(
sqrt_one_minus_alphas_cumprod, t, x.shape
)
sqrt_recip_alphas_t = get_index_from_list(sqrt_recip_alphas, t, x.shape)
# Call model (current image - noise prediction)
with torch.cuda.amp.autocast():
sample_output = Net(x.permute(0, 2, 1, 3, 4), image, timestep=t.float())
sample_output = sample_output.permute(0, 2, 1, 3, 4)
model_mean = sqrt_recip_alphas_t * (
x - betas_t * sample_output / sqrt_one_minus_alphas_cumprod_t
)
if t.item() == 0:
return model_mean
else:
noise = torch.randn_like(x)
posterior_variance_t = get_index_from_list(posterior_variance, t, x.shape)
return model_mean + torch.sqrt(posterior_variance_t) * noise
@torch.no_grad()
def get_image_embedding(input_image):
inputs = clip_processor(images=list(input_image), return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
clip_hidden_states = clip_encoder(**inputs).last_hidden_state.to(device)
vae_hidden_states = vae.encode(input_image).latent_dist.sample() * 0.18215
encoder_hidden_states = adapter(clip_hidden_states, vae_hidden_states)
return encoder_hidden_states
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if not os.path.exists('training_sample'):
os.makedirs('training_sample')
step = 0
for epoch in range(2500):
Net.train()
adapter.train()
for data in train_dataloader:
step += 1
vae_video = data['video'].to(device=device) # [b, f, c, h, w]
image = data['image'].to(device=device)
loss = get_loss(input_image=image, latent_video=vae_video)
optimizerG.zero_grad()
loss.backward()
optimizerG.step()
if get_rank() == 0 and epoch % 40 == 0:
writer.add_scalar('loss', loss, step)
if get_rank() == 0 and epoch % 100 == 0:
torch.save(
{
'net': Net.module.state_dict(),
'adapter': adapter.module.state_dict(),
'opt': optimizerG.state_dict()
}, args.output_dir + "/model_" + str(epoch) + "_" + str(step) + ".pth")
if get_rank() == 0 and epoch % 100 == 0:
noise_video = torch.randn([1, frameLimit, 4, 80, 64]).to(device)
encoder_hidden_states = get_image_embedding(input_image=image[0].unsqueeze(0))
encoded_image = VAE_encode(image[0].unsqueeze(0))
noise_video[:, 0:1] = encoded_image
with torch.no_grad():
for i in range(0, T)[::-1]:
t = torch.full((1,), i, device=device).long()
noise_video = sample_timestep(noise_video, encoder_hidden_states, t)
noise_video[:, 0:1] = encoded_image
final_video = VAE_decode(noise_video)
writer.add_image('input image', image[0], step)
writer.add_video('video', final_video, step)
save_video_frames_as_mp4(final_video, 25, "training_sample/video"+str(epoch)+".mp4")
if get_rank() == 0:
torch.save({
'net': Net.module.state_dict(),
'adapter': adapter.module.state_dict()
}, args.output_dir + "/vae_clip_e100.pth")