Skip to content

Latest commit

 

History

History
50 lines (31 loc) · 2.7 KB

README.md

File metadata and controls

50 lines (31 loc) · 2.7 KB

Serving a Tensorflow CNN model for Hand Detection using Tensorflow Serving

DataHack Summit 2019 Slides

I conducted a hack session at DataHack Summit 2019 on Model Deployment using Tensorflow Serving. Here are the slides - Talk slides

Model Training

I referred to the following work for training the hand detector model -

Victor Dibia, HandTrack: A Library For Prototyping Real-time Hand TrackingInterfaces using Convolutional Neural Networks, https://github.com/victordibia/handtracking

File and folder Descriptions

Dependencies

Example

  • Download the sample video

  • Serve the hand detector

    docker run -p 8501:8500 -p 9000:8501  \
        --mount type=bind,source=/home/tata/Projects/cnn-hand-detector/inference_graph/,target=/models/inference_graph  \ 
        --mount type=bind,source=/home/tata/Projects/cnn-hand-detector/inference_graph/model_config.config,target=/models/model_config.config \  
        -t -i tensorflow/serving --model_config_file=/models/model_config.config --model_config_file_poll_wait_seconds=10 \  --enable_model_warmup=true

    Demo of running the command (using Asciinema)

    The server can now accept gRPC requests through port 8501 and REST requests through port 9000.

  • Run ball_with_hand.py using either gRPC or REST

    python3 ball_with_hand.py --method=grpc --video_path=/home/tata/hand_video.mp4

    Demo Video -

    Tensorflow Serving Demo

More details will be added soon to this README.