Files
trigger-barrier
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||
\documentclass[fleqn]{goose-article} \title{Energy barrier} \author{Tom de Geus} \hypersetup{pdfauthor={T.W.J. de Geus}} \begin{document} \maketitle \section*{Protocol} The protocol is as follows. \begin{enumerate} \item An element is selected for triggering (in the example below chosen in the center of the system). Its location is denoted by $\vec{r}'$. \item A perturbation around a stress- and strain-free configuration is considered. To this end, the selected element (only) is subjected to an eigen stress $\bm{\sigma}'$. The corresponding equilibrium configuration then constitutes to the perturbation that will be used. It is characterised by the stress field $\delta \vec{u} (\vec{r})$, and corresponding stress $\delta \bm{\sigma} (\vec{r})$ and strain $\delta \bm{\varepsilon} (\vec{r})$ fields. \item Two types of perturbations are considered: \begin{itemize} \item Simple shear: $\bm{\sigma}' = \bm{\sigma}'_s = \vec{e}_x \vec{e}_y + \vec{e}_x \vec{e}_y$. Gives: $\delta \vec{u}_s (\vec{r})$, $\delta \bm{\sigma}_s (\vec{r})$, and $\delta \bm{\varepsilon}_s (\vec{r})$. \item Pure shear: $\bm{\sigma}' = \bm{\sigma}'_p = \vec{e}_x \vec{e}_x - \vec{e}_y \vec{e}_y$. Gives: $\delta \vec{u}_p (\vec{r})$, $\delta \bm{\sigma}_p (\vec{r})$, and $\delta \bm{\varepsilon}_p (\vec{r})$. \end{itemize} For the triggered element the strain (and) stress are empirically of the following structure: \begin{itemize} \item Simple shear perturbation: $\delta \bm{\varepsilon}_s (\vec{r}') = \delta \gamma (\vec{e}_x \vec{e}_y + \vec{e}_x \vec{e}_y)$ \item Pure shear perturbation: $\delta \bm{\varepsilon}_p (\vec{r}') = \delta \mathcal{E} (\vec{e}_x \vec{e}_x - \vec{e}_y \vec{e}_y)$ \end{itemize} \item A perturbation $\Delta \vec{u}(\vec{r}) = s \delta \vec{u}_s (\vec{r}) + p \delta \vec{u}_p (\vec{r})$ is then applied such that the yield surface is reached in the triggered element in such a way that the change in potential energy introduced by the perturbation is minimal. \end{enumerate} \begin{figure}[htp] \centering \captionsetup[subfigure]{justification=centering} \begin{minipage}[t]{.49\textwidth} \centering \includegraphics[width=\textwidth]{perturbation_simple-shear_pos.pdf} \subcaption{ Simple shear: $\delta \vec{u}_s (\vec{r})$ } \label{fig:perturbation:simple-shear:pos} \end{minipage} \hfill \begin{minipage}[t]{.49\textwidth} \centering \includegraphics[width=\textwidth]{perturbation_pure-shear_pos.pdf} \subcaption{ Pure shear: $\delta \vec{u}_p (\vec{r})$ } \label{fig:perturbation:pure-shear:pos} \end{minipage} \\ \begin{minipage}[t]{.49\textwidth} \centering \includegraphics[width=\textwidth]{perturbation_simple-shear_neg.pdf} \subcaption{ Simple shear: $- \delta \vec{u}_s (\vec{r})$ } \label{fig:perturbation:simple-shear:neg} \end{minipage} \hfill \begin{minipage}[t]{.49\textwidth} \centering \includegraphics[width=\textwidth]{perturbation_pure-shear_neg.pdf} \subcaption{ Pure shear: $- \delta \vec{u}_p (\vec{r})$ } \label{fig:perturbation:pure-shear:neg} \end{minipage} \caption{ Perturbation modes. The shown colour is the energy change resulting from the perturbation. } \label{fig:perturbation} \end{figure} \begin{figure}[htp] \centering \begin{minipage}[t]{.49\textwidth} \centering \includegraphics[width=\textwidth]{perturbation_phase-diagram_energy.pdf} \end{minipage} \hfill \begin{minipage}[t]{.49\textwidth} \centering \includegraphics[width=\textwidth]{perturbation_phase-diagram_energy-contour.pdf} \end{minipage} \caption{ Change of internal energy, $\Delta E$, for a perturbation: $\Delta \vec{u}(\vec{r}) = s \delta \vec{u}_s (\vec{r}) + p \delta \vec{u}_p (\vec{r})$. A contour plot is also shown. } \label{fig:energy} \end{figure} \begin{figure}[htp] \centering \captionsetup[subfigure]{justification=centering} \begin{minipage}[t]{.49\textwidth} \centering \includegraphics[width=\textwidth]{perturbation_phase-diagram_sig.pdf} \subcaption{ Equivalent stress. } \label{fig:phase-diagram:sig} \end{minipage} \hfill \begin{minipage}[t]{.49\textwidth} \centering \includegraphics[width=\textwidth]{perturbation_phase-diagram_eps.pdf} \subcaption{ Equivalent strain. } \label{fig:phase-diagram:eps} \end{minipage} \caption{ Resulting \subref{fig:phase-diagram:sig} equivalent stress and \subref{fig:phase-diagram:eps} equivalent strain for a perturbation: $\Delta \vec{u}(\vec{r}) = s \delta \vec{u}_s (\vec{r}) + p \delta \vec{u}_p (\vec{r})$. } \label{fig:phase-diagram} \end{figure} \clearpage \section*{Exploring the yield surface} \paragraph{Yield surface} Initially the strain deviator in the triggered element reads \begin{equation} \bm{\varepsilon}_\mathrm{d}(\vec{r}') = \begin{bmatrix} \mathcal{E} & \gamma \\ \gamma & - \mathcal{E} \end{bmatrix} \end{equation} After triggering the strain deviator is \begin{equation} \bm{\varepsilon}_\mathrm{d}^*(\vec{r}') = \begin{bmatrix} \mathcal{E} + p \delta \mathcal{E} & \gamma + s \delta \gamma \\ \gamma + s \delta \gamma & - \mathcal{E} - p \delta \mathcal{E} \end{bmatrix} \end{equation} To reach the yield surface one thus needs to solve \begin{equation} (\mathcal{E} + p \delta \mathcal{E})^2 + (\gamma + s \delta \gamma)^2 = \varepsilon_y^2 \end{equation} for $(s, p)$ (with $\varepsilon_y$ the relevant yield strain). \paragraph{Change of energy} The energy in the system reads \begin{equation} E = \frac{1}{2} \int_\Omega \bm{\sigma}(\vec{r}) : \bm{\varepsilon}(\vec{r}) \; \mathrm{d} \Omega \end{equation} After triggering: \begin{equation} E^* = \frac{1}{2} \int_\Omega (\bm{\sigma}(\vec{r}) + \Delta \bm{\sigma}(\vec{r})) : (\bm{\varepsilon}(\vec{r}) + \Delta \bm{\varepsilon}(\vec{r})) \; \mathrm{d} \Omega \end{equation} where $\Delta \bm{\sigma}(\vec{r}) = s \delta \bm{\sigma}_s(\vec{r}) + p \delta \bm{\sigma}_p(\vec{r})$ and $\Delta \bm{\varepsilon}(\vec{r}) = s \delta \bm{\varepsilon}_s(\vec{r}) + p \delta \bm{\varepsilon}_p(\vec{r})$. It is straightforward to show that the change of energy \begin{equation} \Delta E = E^* - E = \int_\Omega \big(\bm{\sigma}(\vec{r}) + \tfrac{1}{2} \Delta \bm{\sigma}(\vec{r}) \big) : \Delta \bm{\varepsilon}(\vec{r}) \; \mathrm{d} \Omega \end{equation} whereby in practice integration is performed numerically, e.g.\ \begin{equation} \Delta E = E^* - E = \sum\limits_q \delta \Omega_q \; \big(\bm{\sigma}_q + \tfrac{1}{2} \Delta \bm{\sigma}_q \big) : \Delta \bm{\varepsilon}_q \end{equation} \clearpage \section*{Example} Two examples are included: A homogeneous medium that is subjected to shear in \cref{fig:example:shear}, and the same problem additionally subjected to a vertical perturbation of the top and bottom boundaries \cref{fig:example:prestress}. \begin{figure}[htp] \centering \captionsetup[subfigure]{justification=centering} \begin{minipage}[t]{.40\textwidth} \centering \includegraphics[width=\textwidth]{example_shear_config.pdf} \subcaption{Initial configuration.} \end{minipage} \hspace{0.01\textwidth} \begin{minipage}[t]{.40\textwidth} \centering \includegraphics[width=\textwidth]{example_shear_config-perturbed.pdf} \subcaption{After perturbation.} \end{minipage} \\ \begin{minipage}[t]{.31\textwidth} \centering \includegraphics[width=\textwidth]{example_shear_phase-diagram_eps.pdf} \subcaption{$\varepsilon$} \end{minipage} \hfill \begin{minipage}[t]{.31\textwidth} \centering \includegraphics[width=\textwidth]{example_shear_phase-diagram_energy.pdf} \subcaption{$\Delta E$} \end{minipage} \hfill \begin{minipage}[t]{.31\textwidth} \centering \includegraphics[width=\textwidth]{example_shear_phase-diagram_energy-contour.pdf} \subcaption{$\Delta E$} \end{minipage} \caption{ (a--b) Starting and perturbed configuration for a homogeneous sheared system. (c--e) Phase diagram of a perturbation $\Delta \vec{u}(\vec{r}) = s \delta \vec{u}_s (\vec{r}) + p \delta \vec{u}_p (\vec{r})$ of the configuration in (a). The perturbation is applied based on $(s, p)$ that lie on the yield surface and that minimise the increase in potential energy, as shown using a red dot. } \label{fig:example:shear} \end{figure} \begin{figure}[htp] \centering \captionsetup[subfigure]{justification=centering} \begin{minipage}[t]{.40\textwidth} \centering \includegraphics[width=\textwidth]{example_prestress_config.pdf} \subcaption{Initial configuration.} \end{minipage} \hspace{0.01\textwidth} \begin{minipage}[t]{.40\textwidth} \centering \includegraphics[width=\textwidth]{example_prestress_config-perturbed.pdf} \subcaption{After perturbation.} \end{minipage} \\ \begin{minipage}[t]{.31\textwidth} \centering \includegraphics[width=\textwidth]{example_prestress_phase-diagram_eps.pdf} \subcaption{$\varepsilon$} \end{minipage} \hfill \begin{minipage}[t]{.31\textwidth} \centering \includegraphics[width=\textwidth]{example_prestress_phase-diagram_energy.pdf} \subcaption{$\Delta E$} \end{minipage} \hfill \begin{minipage}[t]{.31\textwidth} \centering \includegraphics[width=\textwidth]{example_prestress_phase-diagram_energy-contour.pdf} \subcaption{$\Delta E$} \end{minipage} \caption{ (a--b) Starting and perturbed configuration for a homogeneous sheared system. (c--e) Phase diagram of a perturbation $\Delta \vec{u}(\vec{r}) = s \delta \vec{u}_s (\vec{r}) + p \delta \vec{u}_p (\vec{r})$ of the configuration in (a). The perturbation is applied based on $(s, p)$ that lie on the yield surface and that minimise the increase in potential energy, as shown using a red dot. } \label{fig:example:prestress} \end{figure} \end{document}