Skip to content

Latest commit

 

History

History
160 lines (110 loc) · 3.36 KB

README.md

File metadata and controls

160 lines (110 loc) · 3.36 KB

PyPI version Downloads PyPI version codecov Scrutinizer Code Quality

nptyping

Type hints for Numpy!

Installation

pip install nptyping

Usage

NDArray

nptyping.NDArray lets you define the shape and type of your numpy.ndarray.

You can:

  • specify the number of dimensions;
  • specify the size per dimension;
  • specify the type of the array;
  • instance check your array with your nptying type.

Examples

An Array with any dimensions of any size and any type:

>>> from nptyping import NDArray
>>> from typing import Any


>>> NDArray
NDArray[(typing.Any, ...), typing.Any]

>>> NDArray[(Any, ...)]
NDArray[(typing.Any, ...), typing.Any]

>>> NDArray[(Any, ...), Any]
NDArray[(typing.Any, ...), typing.Any]

An array with 1 dimension of any size and any type:

>>> NDArray[Any]
NDArray[(typing.Any,), typing.Any]

>>> NDArray[(Any,)]
NDArray[(typing.Any,), typing.Any]

>>> NDArray[Any, Any]
NDArray[(typing.Any,), typing.Any]

>>> NDArray[(Any,), Any]
NDArray[(typing.Any,), typing.Any]

An array with 1 dimension of size 3 and any type:

>>> NDArray[3]
NDArray[(3,), typing.Any]

>>> NDArray[(3,)]
NDArray[(3,), typing.Any]

>>> NDArray[(3,), Any]
NDArray[(3,), typing.Any]

An array with 3 dimensions of size 3, 3 and any and any type:

>>> NDArray[3, 3, Any]
NDArray[(3, 3, typing.Any), typing.Any]

>>> NDArray[(3, 3, Any)]
NDArray[(3, 3, typing.Any), typing.Any]

>>> NDArray[(3, 3, Any), Any]
NDArray[(3, 3, typing.Any), typing.Any]

An array with any dimensions of any size and type int:

>>> NDArray[int]
NDArray[(typing.Any, ...), int]

>>> NDArray[(Any, ...), int]
NDArray[(typing.Any, ...), int]

An array with 1 dimension of size 3 and type int:

>>> NDArray[3, int]
NDArray[(3,), int]

>>> NDArray[(3,), int]
NDArray[(3,), int]

An array with any dimensions of size 3 and type int:

>>> NDArray[(3, ...), int]
NDArray[(3, ...), int]

An array with 3 dimensions of sizes 3, 3, 5 and type int:

>>> NDArray[(3, 3, 5), int]
NDArray[(3, 3, 5), int]

Checking your instances

You can use NDArray with isinstance to dynamically check your arrays.

>>> import numpy as np

>>> arr = np.array([[1, 2, 3],
...                 [4, 5, 6]])

>>> isinstance(arr, NDArray[(2, 3), int])
True
>>> isinstance(arr, NDArray[(2, 3), float])
False
>>> isinstance(arr, NDArray[(2, 3, 1), int])
False

Finding the right annotation

You can use NDArray to find the type of a numpy array for you using NDArray.type_of:

>>> NDArray.type_of(np.array([[1, 2], [3, 4.0]]))
NDArray[(2, 2), float64]

py_type

With py_type you can get the Python builtin type that corresponds to a Numpy dtype:

>>> from nptyping import py_type

>>> py_type(np.int32)
<class 'int'>