-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfigure-DNA-Sonar-subtrain-valid-data.R
181 lines (181 loc) · 6.86 KB
/
figure-DNA-Sonar-subtrain-valid-data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
data(package="mlbench")
data(Sonar, package="mlbench")
data(DNA, package="mlbench")
data.list <- list(
Sonar=list(
input.mat=as.matrix(Sonar[,1:60]),
output.vec=ifelse(Sonar$Class=="R", 1, -1)),
DNA=list(
input.mat=ifelse(as.matrix(DNA[,1:180])==0, 0, 1),
output.vec=ifelse(DNA$Class=="n", -1, 1)))
N <- 10
set.seed(1)
rand.pred.vec <- rnorm(N)
subtrain.output.vec <- rep(c(-1, 1), l=N)
subtrain.diff.count.dt <- aum::aum_diffs_binary(subtrain.output.vec, denominator="count")
subtrain.diff.rate.dt <- aum::aum_diffs_binary(subtrain.output.vec, denominator="rate")
library(data.table)
PairsDT <- function(output.vec){
is.positive <- output.vec == 1
data.table(expand.grid(
positive=which(is.positive),
negative=which(!is.positive)))
}
subtrain.pairs.dt <- PairsDT(subtrain.output.vec)
margin <- 1
## Note: for efficiency subtrain labels are assumed to be pre-computed
## in the enclosing environment, once before the optimization starts.
AUM <- function(pred.vec, diff.dt){
L <- aum::aum(diff.dt, pred.vec)
d <- L$derivative_mat
non.diff <- abs(d[,1] - d[,2]) > 1e-6
if(any(non.diff)){
cat(sprintf("%d non-diff points\n", sum(non.diff)))
print(d[non.diff, ])
}
with(L, list(gradient=derivative_mat[,1], loss=aum))
}
loss.list <- list(
logistic=function(pred.vec, output.vec=subtrain.output.vec, ...){
N <- length(pred.vec)
list(
gradient=-output.vec/(1+exp(output.vec*pred.vec))/N,
loss=sum(log(1+exp(-output.vec*pred.vec)))/N)
},
aum.count=function(pred.vec, diff.count.dt=subtrain.diff.count.dt, ...){
AUM(pred.vec, diff.count.dt)
},
aum.rate=function(pred.vec, diff.rate.dt=subtrain.diff.rate.dt, ...){
AUM(pred.vec, diff.rate.dt)
},
squared.hinge.all.pairs=function(pred.vec, pairs.dt=subtrain.pairs.dt, ...){
pairs.dt[, diff := pred.vec[positive]-pred.vec[negative]-margin]
pairs.dt[, diff.clipped := ifelse(diff<0, diff, 0)]
pairs.tall <- data.table::melt(
pairs.dt,
measure.vars=c("positive", "negative"),
value.name="pred.i",
variable.name="label")
## d/dx (x - y - m)^2 = x - y - m
## d/dy (x - y - m)^2 = -(x - y - m)
pairs.tall[, grad.sign := ifelse(label=="positive", 1, -1)]
N.pairs <- nrow(pairs.dt)
grad.dt <- pairs.tall[, .(
gradient=sum(grad.sign*diff.clipped)
), keyby=pred.i]
list(gradient=grad.dt$gradient/N.pairs, loss=sum(pairs.dt$diff.clipped^2)/N.pairs)
}
)
result.list <- list()
for(loss.name in names(loss.list)){
fun <- loss.list[[loss.name]]
result.list[[loss.name]] <- fun(rand.pred.vec)
}
str(result.list)
sapply(result.list, "[[", "gradient")
out.loss.list <- list()
for(data.name in names(data.list)){
input.output.list <- data.list[[data.name]]
input.mat <- input.output.list[["input.mat"]]
full.input.mat <- scale(input.mat)
full.output.vec <- input.output.list[["output.vec"]]
stopifnot(full.output.vec %in% c(-1, 1))
set.seed(1)
n.folds <- 4
unique.folds <- 1:n.folds
fold.vec <- sample(rep(unique.folds, l=length(full.output.vec)))
for(validation.fold in unique.folds){
is.set.list <- list(
validation=fold.vec == validation.fold,
subtrain=fold.vec != validation.fold)
set.data.list <- list()
for(set.name in names(is.set.list)){
is.set <- is.set.list[[set.name]]
output.vec <- full.output.vec[is.set]
set.data.list[[set.name]] <- list(
output.vec=output.vec,
input.mat=full.input.mat[is.set,],
diff.rate.dt=aum::aum_diffs_binary(output.vec, denominator="rate"),
diff.count.dt=aum::aum_diffs_binary(output.vec, denominator="count"),
pairs.dt=PairsDT(output.vec))
}
X.mat <- set.data.list$subtrain$input.mat
for(loss.name in names(loss.list)){
loss.grad.fun <- loss.list[[loss.name]]
step.candidates <- 10^seq(-2, 2, by=0.25)
for(step.size in step.candidates){
set.seed(1)
weight.vec <- rnorm(ncol(X.mat))
done <- FALSE
iteration <- 0
prev.set.loss.vec <- rep(1e10, 2)
while(!done){
iteration <- iteration+1
loss.for.weight <- function(w, set.data=set.data.list$subtrain){
pred <- set.data$input.mat %*% w
set.data$pred.vec <- pred
out <- do.call(loss.grad.fun, set.data)
out$pred <- pred
out
}
loss.before.step <- loss.for.weight(weight.vec)
direction <- -t(X.mat) %*% loss.before.step[["gradient"]]
loss.for.step <- function(step.size){
new.weight <- weight.vec + step.size * direction
out <- loss.for.weight(new.weight)
out$new.weight <- new.weight
out$step.size <- step.size
out
}
loss.after.step <- loss.for.step(step.size)
weight.vec <- loss.after.step[["new.weight"]]
set.loss.vec <- numeric()
for(set.name in names(set.data.list)){
set.data <- set.data.list[[set.name]]
set.loss <- loss.for.weight(weight.vec, set.data)
set.loss.vec[[set.name]] <- set.loss[["loss"]]
roc.df <- WeightedROC::WeightedROC(set.loss[["pred"]], set.data[["output.vec"]])
auc <- WeightedROC::WeightedAUC(roc.df)
out.dt <- data.table(
data.name, validation.fold, loss.name, step.size, iteration, set.name,
auc,
loss.value=set.loss$loss)
for(aum.type in c("count", "rate")){
diff.name <- paste0("diff.", aum.type, ".dt")
aum.list <- aum::aum(set.data[[diff.name]], set.loss[["pred"]])
out.col <- paste0("aum.", aum.type)
out.dt[[out.col]] <- aum.list[["aum"]]
}
out.loss.list[[paste(
data.name, validation.fold, loss.name, step.size, iteration, set.name
)]] <- out.dt
}#for(set.name
diff.set.loss.vec <- set.loss.vec - prev.set.loss.vec
max.inc.iterations <- 10
valid.increasing.iterations <- if(!is.finite(diff.set.loss.vec[["validation"]])){
max.inc.iterations
}else if(0 <= diff.set.loss.vec[["validation"]]){
cat(sprintf(
"data=%s fold=%d loss=%s step=%f it=%d non-dec-iterations=%d\n",
data.name, validation.fold, loss.name, step.size, iteration,
valid.increasing.iterations))
valid.increasing.iterations+1
}else{
0
}
if(
max.inc.iterations <= valid.increasing.iterations
|| loss.after.step$step.size == 0
|| 1000 < iteration
){
done <- TRUE
}
prev.set.loss.vec <- set.loss.vec
}#while(!done
}#for(step.size
}#for(loss.name
}#for(validation.fold
}
out.loss <- do.call(rbind, out.loss.list)
data.table::fwrite(out.loss, "figure-DNA-Sonar-subtrain-valid-data.csv")
system("gzip figure-DNA-Sonar-subtrain-valid-data.csv")