-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathzoneout_pmnist.py
630 lines (534 loc) · 26 KB
/
zoneout_pmnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import sys, tempfile, os.path, cPickle, zipfile, shutil
from cStringIO import StringIO
import logging
from collections import OrderedDict
import numpy as np
import theano, theano.tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams
import blocks.config
import fuel.datasets, fuel.streams, fuel.transformers, fuel.schemes
from fuel.transformers import Transformer
from blocks.graph import ComputationGraph
from blocks.algorithms import GradientDescent, RMSProp, StepClipping, CompositeRule, Momentum
from blocks.model import Model
from blocks.extensions import SimpleExtension, FinishAfter, Printing, ProgressBar, Timing
from blocks.extensions.monitoring import TrainingDataMonitoring, DataStreamMonitoring
from blocks.extensions.stopping import FinishIfNoImprovementAfter
from blocks.extensions.training import TrackTheBest
from blocks.extensions.saveload import Checkpoint
from blocks.serialization import secure_dump
from blocks.main_loop import MainLoop
from blocks.utils import shared_floatx_zeros
from blocks.roles import add_role, PARAMETER
logging.basicConfig()
logger = logging.getLogger(__name__)
floatX = theano.config.floatX
####################
# EVEN MORE BLOCKS EXTENSIONS
####################
class PrintingTo(Printing):
def __init__(self, path, **kwargs):
super(PrintingTo, self).__init__(**kwargs)
self.path = path
with open(self.path, "w") as f:
f.truncate(0)
def do(self, *args, **kwargs):
stdout, stringio = sys.stdout, StringIO()
sys.stdout = stringio
super(PrintingTo, self).do(*args, **kwargs)
sys.stdout = stdout
lines = stringio.getvalue().splitlines()
with open(self.path, "a") as f:
f.write("\n".join(lines))
f.write("\n")
class DumpLog(SimpleExtension):
def __init__(self, path, **kwargs):
kwargs.setdefault("after_training", True)
super(DumpLog, self).__init__(**kwargs)
self.path = path
def do(self, callback_name, *args):
secure_dump(self.main_loop.log, self.path, use_cpickle=True)
class DumpGraph(SimpleExtension):
def __init__(self, path, **kwargs):
kwargs["after_batch"] = True
super(DumpGraph, self).__init__(**kwargs)
self.path = path
def do(self, which_callback, *args, **kwargs):
try:
self.done
except AttributeError:
if hasattr(self.main_loop.algorithm, "_function"):
self.done = True
with open(self.path, "w") as f:
theano.printing.debugprint(self.main_loop.algorithm._function, file=f)
class DumpBest(SimpleExtension):
"""dump if the `notification_name` record is present"""
def __init__(self, notification_name, save_path, **kwargs):
self.notification_name = notification_name
self.save_path = save_path
kwargs.setdefault("after_epoch", True)
super(DumpBest, self).__init__(**kwargs)
def do(self, which_callback, *args):
if self.notification_name in self.main_loop.log.current_row:
secure_dump(self.main_loop, self.save_path, use_cpickle=True)
from blocks.algorithms import StepRule
from blocks.roles import ALGORITHM_BUFFER, add_role
from blocks.utils import shared_floatx
from blocks.theano_expressions import l2_norm
class StepMemory(StepRule):
def compute_steps(self, steps):
# memorize steps for one time step
self.last_steps = OrderedDict()
updates = []
for parameter, step in steps.items():
last_step = shared_floatx(
parameter.get_value() * 0.,
"last_step_%s" % parameter.name)
add_role(last_step, ALGORITHM_BUFFER)
updates.append((last_step, step))
self.last_steps[parameter] = last_step
# compare last and current step directions
self.cosine = (sum((step * self.last_steps[parameter]).sum()
for parameter, step in steps.items())
/ l2_norm(steps.values())
/ l2_norm(self.last_steps.values()))
return steps, updates
class DumpVariables(SimpleExtension):
def __init__(self, save_path, inputs, variables, batch, **kwargs):
super(DumpVariables, self).__init__(**kwargs)
self.save_path = save_path
self.variables = variables
self.function = theano.function(inputs, variables, on_unused_input="warn")
self.batch = batch
self.i = 0
def do(self, which_callback, *args):
values = dict((variable.name, np.asarray(value)) for variable, value in
zip(self.variables, self.function(**self.batch)))
secure_dump(values, "%s_%i.pkl" % (self.save_path, self.i))
self.i += 1
class SharedVariableModifier(SimpleExtension):
def __init__(self, parameter, function, **kwargs):
kwargs.setdefault("after_batch", True)
super(SharedVariableModifier, self).__init__(**kwargs)
self.parameter = parameter
self.function = function
def do(self, which_callback, *args):
iterations_done = self.main_loop.log.status['iterations_done']
old_value = self.parameter.get_value()
new_value = self.function(iterations_done, old_value)
self.parameter.set_value(new_value)
####################
# USEFUL FUNCTIONS
####################
def zeros(shape):
return np.zeros(shape, dtype=theano.config.floatX)
def ones(shape):
return np.ones(shape, dtype=theano.config.floatX)
def glorot(shape):
d = np.sqrt(6. / sum(shape))
return np.random.uniform(-d, +d, size=shape).astype(theano.config.floatX)
def orthogonal(shape):
# taken from https://gist.github.com/kastnerkyle/f7464d98fe8ca14f2a1a
""" benanne lasagne ortho init (faster than qr approach)"""
flat_shape = (shape[0], np.prod(shape[1:]))
a = np.random.normal(0.0, 1.0, flat_shape)
u, _, v = np.linalg.svd(a, full_matrices=False)
q = u if u.shape == flat_shape else v # pick the one with the correct shape
q = q.reshape(shape)
return q[:shape[0], :shape[1]].astype(theano.config.floatX)
####################
# DATASET AND MASKS
# LOADING/STREAMING
####################
_datasets = None
def get_dataset(which_set):
global _datasets
if not _datasets:
MNIST = fuel.datasets.MNIST
# jump through hoops to instantiate only once and only if needed
_datasets = dict(
train=MNIST(which_sets=["train"], subset=slice(None, 50000)),
valid=MNIST(which_sets=["train"], subset=slice(50000, None)),
test=MNIST(which_sets=["test"]))
return _datasets[which_set]
def get_stream_(which_set, batch_size, num_examples=None):
dataset = get_dataset(which_set)
if num_examples is None or num_examples > dataset.num_examples:
num_examples = dataset.num_examples
stream = fuel.streams.DataStream.default_stream(
dataset,
iteration_scheme=fuel.schemes.ShuffledScheme(num_examples, batch_size))
return stream
class SampleZoneouts(Transformer):
def __init__(self, data_stream, z_prob_states, z_prob_cells,
hidden_dim, is_for_test, permutation,
drop_law = "constant",
**kwargs):
super(SampleZoneouts, self).__init__(
data_stream, **kwargs)
self.z_prob_states = 1-z_prob_states
self.z_prob_cells = 1-z_prob_cells
self.hidden_dim = hidden_dim
self.is_for_test = is_for_test
self.produces_examples = False
self.permutation = permutation
def get_data(self, request=None):
data = next(self.child_epoch_iterator)
transformed_data = []
transformed_data.append(
np.swapaxes(data[0].reshape(data[0].shape[0], -1),
0, 1)[self.permutation, :, np.newaxis])
transformed_data.append(data[1][:, 0])
T, B, _ = transformed_data[0].shape
if self.is_for_test:
zoneouts_states = np.ones((T, B, self.hidden_dim)) * self.z_prob_states
zoneouts_cells = np.ones((T, B, self.hidden_dim)) * self.z_prob_cells
else:
zoneouts_states = np.random.binomial(n=1, p=self.z_prob_states,
size=(T, B, self.hidden_dim))
zoneouts_cells = np.random.binomial(n=1, p=self.z_prob_cells,
size=(T, B, self.hidden_dim))
transformed_data.append(zoneouts_states.astype(floatX))
transformed_data.append(zoneouts_states.astype(floatX))
return transformed_data
def get_stream(which_set, batch_size, z_prob_states, z_prob_cells,
hidden_dim, for_evaluation,
num_examples=None):
np.random.seed(seed=1)
permutation = np.random.randint(0, 784, size=(784,))
dataset = get_dataset(which_set)
if num_examples is None or num_examples > dataset.num_examples:
num_examples = dataset.num_examples
stream = fuel.streams.DataStream.default_stream(
dataset,
iteration_scheme=fuel.schemes.ShuffledScheme(num_examples, batch_size))
ds = SampleZoneouts(stream, z_prob_cells, z_prob_states, hidden_dim, for_evaluation, permutation)
ds.sources = ('x', 'y', 'zoneouts_states', 'zoneouts_cells')
return ds
####################
# BATCH NORMALIZATION
####################
def bn(x, gammas, betas, mean, var, args):
assert mean.ndim == 1
assert var.ndim == 1
assert x.ndim == 2
if not args.use_population_statistics:
mean = x.mean(axis=0)
var = x.var(axis=0)
#var = T.maximum(var, args.epsilon)
#var = var + args.epsilon
if baseline:
y = x + betas
else:
var_corrected = var + args.epsilon
y = theano.tensor.nnet.bn.batch_normalization(
inputs=x, gamma=gammas, beta=betas,
mean=T.shape_padleft(mean), std=T.shape_padleft(T.sqrt(var_corrected)),
mode="high_mem")
assert mean.ndim == 1
assert var.ndim == 1
return y, mean, var
activations = dict(
tanh=T.tanh,
identity=lambda x: x,
relu=lambda x: T.max(0, x))
####################
# LSTM
####################
class Empty(object):
pass
class LSTM(object):
def __init__(self, args, nclasses):
self.nclasses = nclasses
self.activation = activations[args.activation]
def allocate_parameters(self, args):
if hasattr(self, "parameters"):
return self.parameters
self.parameters = Empty()
h0 = theano.shared(zeros((args.num_hidden,)), name="h0")
c0 = theano.shared(zeros((args.num_hidden,)), name="c0")
if args.initialization == "id":
Wa = theano.shared(np.concatenate([
np.eye(args.num_hidden),
orthogonal((args.num_hidden,
3 * args.num_hidden)),], axis=1).astype(theano.config.floatX), name="Wa")
else:
Wa = theano.shared(orthogonal((args.num_hidden, 4 * args.num_hidden)), name="Wa")
Wx = theano.shared(orthogonal((1, 4 * args.num_hidden)), name="Wx")
a_gammas = theano.shared(args.initial_gamma * ones((4 * args.num_hidden,)), name="a_gammas")
b_gammas = theano.shared(args.initial_gamma * ones((4 * args.num_hidden,)), name="b_gammas")
ab_betas = theano.shared(args.initial_beta * ones((4 * args.num_hidden,)), name="ab_betas")
# forget gate bias initialization
forget_biais = ab_betas.get_value()
forget_biais[args.num_hidden:2*args.num_hidden] = 1.
ab_betas.set_value(forget_biais)
c_gammas = theano.shared(args.initial_gamma * ones((args.num_hidden,)), name="c_gammas")
c_betas = theano.shared(args.initial_beta * ones((args.num_hidden,)), name="c_betas")
if not baseline:
parameters_list = [h0, c0, Wa, Wx, a_gammas, b_gammas, ab_betas, c_gammas, c_betas]
else:
parameters_list = [h0, c0, Wa, Wx, ab_betas, c_betas]
for parameter in parameters_list:
print parameter.name
add_role(parameter, PARAMETER)
setattr(self.parameters, parameter.name, parameter)
return self.parameters
def construct_graph_popstats(self, args, x, zoneouts_states, zoneouts_cells,
length, popstats=None):
p = self.allocate_parameters(args)
def stepfn(x, zoneouts_states, zoneouts_cells,
dummy_h, dummy_c,
pop_means_a, pop_means_b, pop_means_c,
pop_vars_a, pop_vars_b, pop_vars_c,
h, c):
atilde = T.dot(h, p.Wa)
btilde = x
if baseline:
a_normal, a_mean, a_var = bn(atilde, 1.0, p.ab_betas, pop_means_a, pop_vars_a, args)
b_normal, b_mean, b_var = bn(btilde, 1.0, 0, pop_means_b, pop_vars_b, args)
else:
a_normal, a_mean, a_var = bn(atilde, p.a_gammas, p.ab_betas, pop_means_a, pop_vars_a, args)
b_normal, b_mean, b_var = bn(btilde, p.b_gammas, 0, pop_means_b, pop_vars_b, args)
ab = a_normal + b_normal
g, f, i, o = [fn(ab[:, j * args.num_hidden:(j + 1) * args.num_hidden])
for j, fn in enumerate([self.activation] + 3 * [T.nnet.sigmoid])]
if args.igate_drop:
c_n = dummy_c + f * c + zoneouts_states * (i * g)
else:
c_n = dummy_c + f * c + i * g
if baseline:
c_normal, c_mean, c_var = bn(c_n, 1.0, p.c_betas, pop_means_c, pop_vars_c, args)
else:
c_normal, c_mean, c_var = bn(c_n, p.c_gammas, p.c_betas, pop_means_c, pop_vars_c, args)
h_n = dummy_h + o * self.activation(c_normal)
## Zoneout
h = h_n * zoneouts_states + (1 - zoneouts_states) * h
c = c_n * zoneouts_cells + (1 - zoneouts_cells) * c
return (h, c, atilde, btilde, c_normal,
a_mean, b_mean, c_mean,
a_var, b_var, c_var)
xtilde = T.dot(x, p.Wx)
if args.noise:
# prime h with white noise
Trng = MRG_RandomStreams()
h_prime = Trng.normal((xtilde.shape[1], args.num_hidden), std=args.noise)
elif args.summarize:
# prime h with mean of example
h_prime = x.mean(axis=[0, 2])[:, None]
else:
h_prime = 0
dummy_states = dict(h=T.zeros((xtilde.shape[0], xtilde.shape[1], args.num_hidden)),
c=T.zeros((xtilde.shape[0], xtilde.shape[1], args.num_hidden)))
if popstats is None:
popstats = OrderedDict()
for key, size in zip("abc", [4*args.num_hidden, 4*args.num_hidden, args.num_hidden]):
for stat, init in zip("mean var".split(), [0, 1]):
name = "%s_%s" % (key, stat)
popstats[name] = theano.shared(
init + np.zeros((length, size,), dtype=theano.config.floatX),
name=name)
popstats_seq = [popstats['a_mean'], popstats['b_mean'], popstats['c_mean'],
popstats['a_var'], popstats['b_var'], popstats['c_var']]
[h, c, atilde, btilde, htilde,
batch_mean_a, batch_mean_b, batch_mean_c,
batch_var_a, batch_var_b, batch_var_c ], _ = theano.scan(
stepfn,
sequences=[xtilde, zoneouts_states, zoneouts_cells, dummy_states["h"], dummy_states["c"]] + popstats_seq,
outputs_info=[T.repeat(p.h0[None, :], xtilde.shape[1], axis=0) + h_prime,
T.repeat(p.c0[None, :], xtilde.shape[1], axis=0),
None, None, None,
None, None, None,
None, None, None])
batchstats = OrderedDict()
batchstats['a_mean'] = batch_mean_a
batchstats['b_mean'] = batch_mean_b
batchstats['c_mean'] = batch_mean_c
batchstats['a_var'] = batch_var_a
batchstats['b_var'] = batch_var_b
batchstats['c_var'] = batch_var_c
updates = OrderedDict()
if not args.use_population_statistics:
alpha = 1e-2
for key in "abc":
for stat, init in zip("mean var".split(), [0, 1]):
name = "%s_%s" % (key, stat)
popstats[name].tag.estimand = batchstats[name]
updates[popstats[name]] = (alpha * batchstats[name] +
(1 - alpha) * popstats[name])
return dict(h=h, c=c,
atilde=atilde, btilde=btilde, htilde=htilde), updates, dummy_states, popstats
def construct_common_graph(situation, args, outputs, dummy_states, Wy, by, y):
ytilde = T.dot(outputs["h"][-1], Wy) + by
yhat = T.nnet.softmax(ytilde)
errors = T.neq(y, T.argmax(yhat, axis=1))
cross_entropies = T.nnet.categorical_crossentropy(yhat, y)
error_rate = errors.mean().copy(name="error_rate")
cross_entropy = cross_entropies.mean().copy(name="cross_entropy")
cost = cross_entropy.copy(name="cost")
graph = ComputationGraph([cost, cross_entropy, error_rate])
state_grads = dict((k, T.grad(cost, v)) for k, v in dummy_states.items())
extensions = []
extensions = [
DumpVariables("%s_hiddens" % situation, graph.inputs,
[v.copy(name="%s%s" % (k, suffix))
for suffix, things in [("", outputs), ("_grad", state_grads)]
for k, v in things.items()],
batch=next(get_stream(which_set="train",
batch_size=args.batch_size,
num_examples=args.batch_size,
z_prob_states=args.z_prob_states,
z_prob_cells=args.z_prob_cells,
for_evaluation=False,
hidden_dim=args.num_hidden)
.get_epoch_iterator(as_dict=True)),
before_training=True, every_n_epochs=10)]
return graph, extensions
def construct_graphs(args, nclasses, length):
constructor = LSTM #if args.lstm else raise NotImplementedError('we only lstm')
if args.unpermuted:
pass;
else:
permutation = np.random.randint(0, length, size=(length,))
Wy = theano.shared(orthogonal((args.num_hidden, nclasses)), name="Wy")
by = theano.shared(np.zeros((nclasses,), dtype=theano.config.floatX), name="by")
### graph construction
inputs = dict(features=T.tensor3("x"), zoneouts_states=T.tensor3('zoneouts_states'), zoneouts_cells=T.tensor3('zoneouts_cells'), targets=T.ivector("y"))
x, zoneouts_states, zoneouts_cells, y = inputs["features"], inputs["zoneouts_states"], inputs["zoneouts_cells"], inputs["targets"]
theano.config.compute_test_value = "warn"
batch = next(get_stream(which_set="train", batch_size=args.batch_size,
z_prob_states=args.z_prob_states, z_prob_cells=args.z_prob_cells,
for_evaluation=False,
hidden_dim=args.num_hidden).get_epoch_iterator())
x.tag.test_value = batch[0]
y.tag.test_value = batch[1]
zoneouts_states.tag.test_value = batch[2]
zoneouts_cells.tag.test_value = batch[3]
args.use_population_statistics = False
turd = constructor(args, nclasses)
(outputs, training_updates, dummy_states, popstats) = turd.construct_graph_popstats(args, x, zoneouts_states, zoneouts_cells, length)
training_graph, training_extensions = construct_common_graph("training", args, outputs, dummy_states, Wy, by, y)
args.use_population_statistics = True
(inf_outputs, inference_updates, dummy_states, _) = turd.construct_graph_popstats(args, x, zoneouts_states, zoneouts_cells, length, popstats=popstats)
inference_graph, inference_extensions = construct_common_graph("inference", args, inf_outputs, dummy_states, Wy, by, y)
add_role(Wy, PARAMETER)
add_role(by, PARAMETER)
args.use_population_statistics = False
return (dict(training=training_graph, inference=inference_graph),
dict(training=training_extensions, inference=inference_extensions),
dict(training=training_updates, inference=inference_updates))
if __name__ == "__main__":
sequence_length = 784
nclasses = 10
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--epsilon", type=float, default=1e-5)
parser.add_argument("--batch_size", type=int, default=100)
parser.add_argument("--noise", type=float, default=None)
parser.add_argument("--summarize", action="store_true")
parser.add_argument("--num_hidden", type=int, default=100)
parser.add_argument("--batch_normalization", action="store_true")
parser.add_argument("--igate_drop", action="store_true")
parser.add_argument("--z_prob_cells", type=float, default=1.0)
parser.add_argument("--z_prob_states", type=float, default=1.0)
parser.add_argument("--lstm", action="store_true")
parser.add_argument("--initial_gamma", type=float, default=0.1)
parser.add_argument("--initial_beta", type=float, default=0)
parser.add_argument("--cluster", action="store_true")
parser.add_argument("--activation", choices=list(activations.keys()), default="tanh")
parser.add_argument("--initialization", type=str, default="ortho")
parser.add_argument("--continue_from")
parser.add_argument("--unpermuted", action="store_true")
args = parser.parse_args()
#assert not (args.noise and args.summarize)
np.random.seed(args.seed)
blocks.config.config.default_seed = args.seed
if args.continue_from:
from blocks.serialization import load
main_loop = load(args.continue_from)
main_loop.run()
sys.exit(0)
#kind of hacky way to use recurrent batchnorm code with minimal edits
if args.batch_normalization:
baseline=False
else:
baseline=True
graphs, extensions, updates = construct_graphs(args, nclasses, sequence_length)
### optimization algorithm definition
step_rule = CompositeRule([
StepClipping(1.),
#Momentum(learning_rate=args.learning_rate, momentum=0.9),
RMSProp(learning_rate=args.learning_rate, decay_rate=0.5),
])
algorithm = GradientDescent(cost=graphs["training"].outputs[0],
parameters=graphs["training"].parameters,
step_rule=step_rule)
algorithm.add_updates(updates["training"])
model = Model(graphs["training"].outputs[0])
extensions = extensions["training"] + extensions["inference"]
# step monitor (after epoch to limit the log size)
step_channels = []
step_channels.extend([
algorithm.steps[param].norm(2).copy(name="step_norm:%s" % name)
for name, param in model.get_parameter_dict().items()])
step_channels.append(algorithm.total_step_norm.copy(name="total_step_norm"))
step_channels.append(algorithm.total_gradient_norm.copy(name="total_gradient_norm"))
step_channels.extend(graphs["training"].outputs)
logger.warning("constructing training data monitor")
extensions.append(TrainingDataMonitoring(
step_channels, prefix="iteration", after_batch=False))
# parameter monitor
extensions.append(DataStreamMonitoring(
[param.norm(2).copy(name="parameter.norm:%s" % name)
for name, param in model.get_parameter_dict().items()],
data_stream=None, after_epoch=True))
# performance monitor
for situation in "training".split(): # add inference
for which_set in "train valid test".split():
logger.warning("constructing %s %s monitor" % (which_set, situation))
channels = list(graphs[situation].outputs)
extensions.append(DataStreamMonitoring(
channels,
prefix="%s_%s" % (which_set, situation), after_epoch=True,
data_stream=get_stream(which_set=which_set, for_evaluation=True,
batch_size=args.batch_size,
z_prob_states=args.z_prob_states,
z_prob_cells=args.z_prob_cells,
hidden_dim=args.num_hidden)))
for situation in "inference".split(): # add inference
for which_set in "valid test".split():
logger.warning("constructing %s %s monitor" % (which_set, situation))
channels = list(graphs[situation].outputs)
extensions.append(DataStreamMonitoring(
channels,
prefix="%s_%s" % (which_set, situation), after_epoch=True,
data_stream=get_stream(which_set=which_set, for_evaluation=True,
batch_size=args.batch_size,
z_prob_states=args.z_prob_states,
z_prob_cells=args.z_prob_cells,
hidden_dim=args.num_hidden)))
extensions.extend([
TrackTheBest("valid_training_error_rate", "best_valid_training_error_rate"),
DumpBest("best_valid_training_error_rate", "best.zip"),
FinishAfter(after_n_epochs=args.num_epochs),
#FinishIfNoImprovementAfter("best_valid_error_rate", epochs=50),
Checkpoint("checkpoint.zip", on_interrupt=False, every_n_epochs=1, use_cpickle=True),
DumpLog("log.pkl", after_epoch=True)])
if not args.cluster:
extensions.append(ProgressBar())
extensions.extend([
Timing(),
Printing(),
PrintingTo("log"),
])
train_stream = get_stream(which_set="train", for_evaluation=False,
batch_size=args.batch_size,
z_prob_cells=args.z_prob_cells,
z_prob_states=args.z_prob_states,
hidden_dim=args.num_hidden)
main_loop = MainLoop(
data_stream=train_stream,
algorithm=algorithm, extensions=extensions, model=model)
main_loop.run()