-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparanoidnet.py
41 lines (34 loc) · 1.44 KB
/
paranoidnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import torch.nn as nn
import torch.optim as optim
class ParanoidNet(nn.Module):
"""
This implementation illustrates how ParanoidNet attributes poor performance or training
difficulties to perceived sabotage or interference, reflecting the human tendency toward paranoia.
"""
def init(self, input_dim, output_dim, alpha, rho, mu, sigma):
super(ParanoidNet, self).init()
self.layer = nn.Linear(input_dim, output_dim)
self.alpha = alpha
self.rho = rho
self.mu = mu
self.sigma = sigma
def forward(self, x):
return self.layer(x)
def paranoia_function(self, gradients):
interference = torch.normal(mean=self.mu, std=self.sigma, size=gradients.shape)
return gradients + self.rho * interference
def train_paranoid(self, train_data, epochs):
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(self.parameters(), lr=self.alpha)
for epoch in range(epochs):
for inputs, targets in train_data:
optimizer.zero_grad()
outputs = self(inputs)
loss = criterion(outputs, targets)
loss.backward()
with torch.no_grad():
for p, grad in zip(self.parameters(), self.parameters()):
mod_grad = self.paranoia_function(grad.grad)
p.add_(-self.alpha, mod_grad)
optimizer.step()