-
Notifications
You must be signed in to change notification settings - Fork 615
/
Copy pathhardshrink.py
60 lines (52 loc) · 2.04 KB
/
hardshrink.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
from tensorflow_addons.utils.types import Number, TensorLike
@tf.keras.utils.register_keras_serializable(package="Addons")
def hardshrink(x: TensorLike, lower: Number = -0.5, upper: Number = 0.5) -> tf.Tensor:
r"""Hard shrink function.
Computes hard shrink function:
$$
\mathrm{hardshrink}(x) =
\begin{cases}
x & \text{if } x < \text{lower} \\
x & \text{if } x > \text{upper} \\
0 & \text{otherwise}
\end{cases}.
$$
Usage:
>>> x = tf.constant([1.0, 0.0, 1.0])
>>> tfa.activations.hardshrink(x)
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([1., 0., 1.], dtype=float32)>
Args:
x: A `Tensor`. Must be one of the following types:
`bfloat16`, `float16`, `float32`, `float64`.
lower: `float`, lower bound for setting values to zeros.
upper: `float`, upper bound for setting values to zeros.
Returns:
A `Tensor`. Has the same type as `x`.
"""
if lower > upper:
raise ValueError(
"The value of lower is {} and should"
" not be higher than the value "
"variable upper, which is {} .".format(lower, upper)
)
x = tf.convert_to_tensor(x)
mask_lower = x < lower
mask_upper = upper < x
mask = tf.logical_or(mask_lower, mask_upper)
mask = tf.cast(mask, x.dtype)
return x * mask