Skip to content

Commit 4a74b40

Browse files
TensorFlow Lattice Authorsmmilanifard
TensorFlow Lattice Authors
authored andcommitted
Internal change
PiperOrigin-RevId: 618303175 Change-Id: I7d5db653bc2d804502cae70ea4d06b58c536e705
1 parent 4bb3fac commit 4a74b40

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

46 files changed

+1664
-6622
lines changed

docs/_book.yaml

-4
Original file line numberDiff line numberDiff line change
@@ -26,10 +26,6 @@ upper_tabs:
2626
path: /lattice/tutorials/keras_layers
2727
- title: Keras Premade Models
2828
path: /lattice/tutorials/premade_models
29-
- title: Canned Estimators
30-
path: /lattice/tutorials/canned_estimators
31-
- title: Custom Estimators
32-
path: /lattice/tutorials/custom_estimators
3329
- title: Aggregate Function Models
3430
path: /lattice/tutorials/aggregate_function_models
3531

docs/_index.yaml

+1-2
Original file line numberDiff line numberDiff line change
@@ -15,8 +15,7 @@ landing_page:
1515
<a href="./tutorials/shape_constraints">shape constraints</a>. This is done using a
1616
collection of <a href="./tutorials/keras_layers">Keras layers</a> that can satisfy
1717
constraints such as monotonicity, convexity and how features interact. The library also
18-
provides easy to setup <a href="./tutorials/premade_models">premade models</a> and
19-
<a href="./tutorials/canned_estimators">canned estimators</a>.</p>
18+
provides easy to setup <a href="./tutorials/premade_models">premade models</a>.</p>
2019
<p>With TF Lattice you can use domain knowledge to better extrapolate to the parts of the
2120
input space not covered by the training dataset. This helps avoid unexpected model behaviour
2221
when the serving distribution is different from the training distribution.</p>

docs/install.md

+3-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ There are several ways to set up your environment to use TensorFlow Lattice
55

66
* The easiest way to learn and use TFL requires no installation: run the any
77
of the tutorials (e.g.
8-
[canned estimators tutorial](tutorials/canned_estimators.ipynb)).
8+
[premade models](tutorials/premade_models.ipynb)).
99
* To use TFL on a local machine, install the `tensorflow-lattice` pip package.
1010
* If you have a unique machine configuration, you can build the package from
1111
source.
@@ -18,6 +18,8 @@ Install using pip.
1818
pip install --upgrade tensorflow-lattice
1919
```
2020

21+
Note that you will need to have `tf_keras` package installed as well.
22+
2123
## Build from source
2224

2325
Clone the github repo:

docs/overview.md

+3-4
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ knowledge into the learning process through common-sense or policy-driven
66
[shape constraints](tutorials/shape_constraints.ipynb). This is done using a
77
collection of [Keras layers](tutorials/keras_layers.ipynb) that can satisfy
88
constraints such as monotonicity, convexity and pairwise trust. The library also
9-
provides easy to setup [canned estimators](tutorials/canned_estimators.ipynb).
9+
provides easy to setup [premade models](tutorials/premade_models.ipynb).
1010

1111
## Concepts
1212

@@ -59,7 +59,7 @@ following show examples such calibrations functions with 10 keypoints:
5959
</p>
6060

6161
It is often a good idea to use the quantiles of the features as input keypoints.
62-
TensorFlow Lattice [canned estimators](tutorials/canned_estimators.ipynb) can
62+
TensorFlow Lattice [premade models](tutorials/premade_models.ipynb) can
6363
automatically set the input keypoints to the feature quantiles.
6464

6565
For categorical features, TensorFlow Lattice provides categorical calibration
@@ -209,8 +209,7 @@ include embeddings or other Keras layers.
209209
## Tutorials and API docs
210210

211211
For common model architectures, you can use
212-
[Keras premade models](tutorials/premade_models.ipynb) or
213-
[canned Estimators](tutorials/canned_estimators.ipynb). You can also create
212+
[Keras premade models](tutorials/premade_models.ipynb). You can also create
214213
custom models using [TF Lattice Keras layers](tutorials/keras_layers.ipynb) or
215214
mix and match with other Keras layers. Check out the
216215
[full API docs](https://www.tensorflow.org/lattice/api_docs/python/tfl) for

0 commit comments

Comments
 (0)