-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathefficientnet.py
327 lines (288 loc) · 12.1 KB
/
efficientnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of EfficientNet Networks."""
import math
from typing import Any, List, Tuple
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers
layers = tf_keras.layers
# The fixed EfficientNet-B0 architecture discovered by NAS.
# Each element represents a specification of a building block:
# (block_fn, block_repeats, kernel_size, strides, expand_ratio, in_filters,
# out_filters, is_output)
EN_B0_BLOCK_SPECS = [
('mbconv', 1, 3, 1, 1, 32, 16, False),
('mbconv', 2, 3, 2, 6, 16, 24, True),
('mbconv', 2, 5, 2, 6, 24, 40, True),
('mbconv', 3, 3, 2, 6, 40, 80, False),
('mbconv', 3, 5, 1, 6, 80, 112, True),
('mbconv', 4, 5, 2, 6, 112, 192, False),
('mbconv', 1, 3, 1, 6, 192, 320, True),
]
SCALING_MAP = {
'b0': dict(width_scale=1.0, depth_scale=1.0),
'b1': dict(width_scale=1.0, depth_scale=1.1),
'b2': dict(width_scale=1.1, depth_scale=1.2),
'b3': dict(width_scale=1.2, depth_scale=1.4),
'b4': dict(width_scale=1.4, depth_scale=1.8),
'b5': dict(width_scale=1.6, depth_scale=2.2),
'b6': dict(width_scale=1.8, depth_scale=2.6),
'b7': dict(width_scale=2.0, depth_scale=3.1),
}
class BlockSpec():
"""A container class that specifies the block configuration for MnasNet."""
def __init__(self, block_fn: str, block_repeats: int, kernel_size: int,
strides: int, expand_ratio: float, in_filters: int,
out_filters: int, is_output: bool, width_scale: float,
depth_scale: float):
self.block_fn = block_fn
self.block_repeats = round_repeats(block_repeats, depth_scale)
self.kernel_size = kernel_size
self.strides = strides
self.expand_ratio = expand_ratio
self.in_filters = nn_layers.round_filters(in_filters, width_scale)
self.out_filters = nn_layers.round_filters(out_filters, width_scale)
self.is_output = is_output
def round_repeats(repeats: int, multiplier: float, skip: bool = False) -> int:
"""Returns rounded number of filters based on depth multiplier."""
if skip or not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
def block_spec_decoder(specs: List[Tuple[Any, ...]], width_scale: float,
depth_scale: float) -> List[BlockSpec]:
"""Decodes and returns specs for a block."""
decoded_specs = []
for s in specs:
s = s + (
width_scale,
depth_scale,
)
decoded_specs.append(BlockSpec(*s))
return decoded_specs
@tf_keras.utils.register_keras_serializable(package='Vision')
class EfficientNet(tf_keras.Model):
"""Creates an EfficientNet family model.
This implements the EfficientNet model from:
Mingxing Tan, Quoc V. Le.
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
(https://arxiv.org/pdf/1905.11946)
"""
def __init__(self,
model_id: str,
input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
shape=[None, None, None, 3]),
se_ratio: float = 0.0,
stochastic_depth_drop_rate: float = 0.0,
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: tf_keras.regularizers.Regularizer = None,
bias_regularizer: tf_keras.regularizers.Regularizer = None,
activation: str = 'relu',
se_inner_activation: str = 'relu',
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001, # pytype: disable=annotation-type-mismatch # typed-keras
**kwargs):
"""Initializes an EfficientNet model.
Args:
model_id: A `str` of model ID of EfficientNet.
input_specs: A `tf_keras.layers.InputSpec` of the input tensor.
se_ratio: A `float` of squeeze and excitation ratio for inverted
bottleneck blocks.
stochastic_depth_drop_rate: A `float` of drop rate for drop connect layer.
kernel_initializer: A `str` for kernel initializer of convolutional
layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default to None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
Default to None.
activation: A `str` of name of the activation function.
se_inner_activation: A `str` of name of the activation function used in
Sequeeze and Excitation layer.
use_sync_bn: If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
**kwargs: Additional keyword arguments to be passed.
"""
self._model_id = model_id
self._input_specs = input_specs
self._se_ratio = se_ratio
self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
self._use_sync_bn = use_sync_bn
self._activation = activation
self._se_inner_activation = se_inner_activation
self._kernel_initializer = kernel_initializer
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._norm = layers.BatchNormalization
if tf_keras.backend.image_data_format() == 'channels_last':
bn_axis = -1
else:
bn_axis = 1
# Build EfficientNet.
inputs = tf_keras.Input(shape=input_specs.shape[1:])
width_scale = SCALING_MAP[model_id]['width_scale']
depth_scale = SCALING_MAP[model_id]['depth_scale']
# Build stem.
x = layers.Conv2D(
filters=nn_layers.round_filters(32, width_scale),
kernel_size=3,
strides=2,
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
inputs)
x = self._norm(
axis=bn_axis,
momentum=norm_momentum,
epsilon=norm_epsilon,
synchronized=use_sync_bn)(
x)
x = tf_utils.get_activation(activation)(x)
# Build intermediate blocks.
endpoints = {}
endpoint_level = 2
decoded_specs = block_spec_decoder(EN_B0_BLOCK_SPECS, width_scale,
depth_scale)
for i, specs in enumerate(decoded_specs):
x = self._block_group(
inputs=x, specs=specs, name='block_group_{}'.format(i))
if specs.is_output:
endpoints[str(endpoint_level)] = x
endpoint_level += 1
# Build output specs for downstream tasks.
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
# Build the final conv for classification.
x = layers.Conv2D(
filters=nn_layers.round_filters(1280, width_scale),
kernel_size=1,
strides=1,
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
x)
x = self._norm(
axis=bn_axis,
momentum=norm_momentum,
epsilon=norm_epsilon,
synchronized=use_sync_bn)(
x)
endpoints[str(endpoint_level)] = tf_utils.get_activation(activation)(x)
super(EfficientNet, self).__init__(
inputs=inputs, outputs=endpoints, **kwargs)
def _block_group(self,
inputs: tf.Tensor,
specs: BlockSpec,
name: str = 'block_group'):
"""Creates one group of blocks for the EfficientNet model.
Args:
inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
specs: The specifications for one inverted bottleneck block group.
name: A `str` name for the block.
Returns:
The output `tf.Tensor` of the block layer.
"""
if specs.block_fn == 'mbconv':
block_fn = nn_blocks.InvertedBottleneckBlock
else:
raise ValueError('Block func {} not supported.'.format(specs.block_fn))
x = block_fn(
in_filters=specs.in_filters,
out_filters=specs.out_filters,
expand_ratio=specs.expand_ratio,
strides=specs.strides,
kernel_size=specs.kernel_size,
se_ratio=self._se_ratio,
stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activation=self._activation,
se_inner_activation=self._se_inner_activation,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon)(
inputs)
for _ in range(1, specs.block_repeats):
x = block_fn(
in_filters=specs.out_filters, # Set 'in_filters' to 'out_filters'.
out_filters=specs.out_filters,
expand_ratio=specs.expand_ratio,
strides=1, # Fix strides to 1.
kernel_size=specs.kernel_size,
se_ratio=self._se_ratio,
stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activation=self._activation,
se_inner_activation=self._se_inner_activation,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon)(
x)
return tf.identity(x, name=name)
def get_config(self):
config_dict = {
'model_id': self._model_id,
'se_ratio': self._se_ratio,
'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'activation': self._activation,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon
}
return config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def output_specs(self):
"""A dict of {level: TensorShape} pairs for the model output."""
return self._output_specs
@factory.register_backbone_builder('efficientnet')
def build_efficientnet(
input_specs: tf_keras.layers.InputSpec,
backbone_config: hyperparams.Config,
norm_activation_config: hyperparams.Config,
l2_regularizer: tf_keras.regularizers.Regularizer = None,
se_inner_activation: str = 'relu') -> tf_keras.Model: # pytype: disable=annotation-type-mismatch # typed-keras
"""Builds EfficientNet backbone from a config."""
backbone_type = backbone_config.type
backbone_cfg = backbone_config.get()
assert backbone_type == 'efficientnet', (f'Inconsistent backbone type '
f'{backbone_type}')
return EfficientNet(
model_id=backbone_cfg.model_id,
input_specs=input_specs,
stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
se_ratio=backbone_cfg.se_ratio,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer,
se_inner_activation=se_inner_activation)