-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
multivariate_student_t.py
419 lines (345 loc) · 14.6 KB
/
multivariate_student_t.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Multivariate Student's t-distribution."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow_probability.python import math as tfp_math
from tensorflow_probability.python.bijectors import identity as identity_bijector
from tensorflow_probability.python.distributions import chi2 as chi2_lib
from tensorflow_probability.python.distributions import distribution
from tensorflow_probability.python.distributions import mvn_linear_operator
from tensorflow_probability.python.internal import assert_util
from tensorflow_probability.python.internal import distribution_util
from tensorflow_probability.python.internal import dtype_util
from tensorflow_probability.python.internal import reparameterization
from tensorflow_probability.python.internal import samplers
from tensorflow_probability.python.internal import tensor_util
__all__ = [
'MultivariateStudentTLinearOperator',
]
class MultivariateStudentTLinearOperator(distribution.Distribution):
"""The [Multivariate Student's t-distribution](
https://en.wikipedia.org/wiki/Multivariate_t-distribution) on `R^k`.
#### Mathematical Details
The probability density function (pdf) is,
```none
pdf(x; df, loc, Sigma) = (1 + ||y||**2 / df)**(-0.5 (df + k)) / Z
where,
y = inv(Sigma) (x - loc)
Z = abs(det(Sigma)) sqrt(df pi)**k Gamma(0.5 df) / Gamma(0.5 (df + k))
```
where:
* `df` is a positive scalar.
* `loc` is a vector in `R^k`,
* `Sigma` is a positive definite `shape' matrix in `R^{k x k}`, parameterized
as `scale @ scale.T` in this class,
* `Z` denotes the normalization constant, and,
* `||y||**2` denotes the squared Euclidean norm of `y`.
The Multivariate Student's t-distribution distribution is a member of the
[location-scale
family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
constructed as,
```none
X ~ MultivariateT(loc=0, scale=1) # Identity scale, zero shift.
Y = scale @ X + loc
```
#### Examples
```python
tfd = tfp.distributions
# Initialize a single 3-variate Student's t.
df = 3.
loc = [1., 2, 3]
scale = [[ 0.6, 0. , 0. ],
[ 0.2, 0.5, 0. ],
[ 0.1, -0.3, 0.4]]
sigma = tf.matmul(scale, scale, adjoint_b=True)
# ==> [[ 0.36, 0.12, 0.06],
# [ 0.12, 0.29, -0.13],
# [ 0.06, -0.13, 0.26]]
mvt = tfd.MultivariateStudentTLinearOperator(
df=df,
loc=loc,
scale=tf.linalg.LinearOperatorLowerTriangular(scale))
# Covariance is closely related to the sigma matrix (for df=3, it is 3x of the
# sigma matrix).
mvt.covariance().eval()
# ==> [[ 1.08, 0.36, 0.18],
# [ 0.36, 0.87, -0.39],
# [ 0.18, -0.39, 0.78]]
# Compute the pdf of an`R^3` observation; return a scalar.
mvt.prob([-1., 0, 1]).eval() # shape: []
"""
def __init__(self,
df,
loc,
scale,
validate_args=False,
allow_nan_stats=True,
name='MultivariateStudentTLinearOperator'):
"""Construct Multivariate Student's t-distribution on `R^k`.
The `batch_shape` is the broadcast shape between `df`, `loc` and `scale`
arguments.
The `event_shape` is given by last dimension of the matrix implied by
`scale`. The last dimension of `loc` must broadcast with this.
Additional leading dimensions (if any) will index batches.
Args:
df: A positive floating-point `Tensor`. Has shape `[B1, ..., Bb]` where `b
>= 0`.
loc: Floating-point `Tensor`. Has shape `[B1, ..., Bb, k]` where `k` is
the event size.
scale: Instance of `LinearOperator` with a floating `dtype` and shape
`[B1, ..., Bb, k, k]`.
validate_args: Python `bool`, default `False`. Whether to validate input
with asserts. If `validate_args` is `False`, and the inputs are invalid,
correct behavior is not guaranteed.
allow_nan_stats: Python `bool`, default `True`. If `False`, raise an
exception if a statistic (e.g. mean/variance/etc...) is undefined for
any batch member If `True`, batch members with valid parameters leading
to undefined statistics will return NaN for this statistic.
name: The name to give Ops created by the initializer.
Raises:
TypeError: if not `scale.dtype.is_floating`.
ValueError: if not `scale.is_non_singular`.
"""
parameters = dict(locals())
if not dtype_util.is_floating(scale.dtype):
raise TypeError('`scale` must have floating-point dtype.')
if validate_args and not scale.is_non_singular:
raise ValueError('`scale` must be non-singular.')
with tf.name_scope(name) as name:
dtype = dtype_util.common_dtype([df, loc, scale], dtype_hint=tf.float32)
self._df = tensor_util.convert_nonref_to_tensor(
df, name='df', dtype=dtype)
self._loc = tensor_util.convert_nonref_to_tensor(
loc, name='loc', dtype=dtype)
self._scale = scale
super(MultivariateStudentTLinearOperator, self).__init__(
dtype=dtype,
reparameterization_type=reparameterization.FULLY_REPARAMETERIZED,
parameters=parameters,
name=name,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats)
self._parameters = parameters
@property
def loc(self):
"""The location parameter of the distribution.
`loc` applies an elementwise shift to the distribution.
```none
X ~ MultivariateT(loc=0, scale=1) # Identity scale, zero shift.
Y = scale @ X + loc
```
Returns:
The `loc` `Tensor`.
"""
return self._loc
@property
def scale(self):
"""The scale parameter of the distribution.
`scale` applies an affine scale to the distribution.
```none
X ~ MultivariateT(loc=0, scale=1) # Identity scale, zero shift.
Y = scale @ X + loc
```
Returns:
The `scale` `LinearOperator`.
"""
return self._scale
@property
def df(self):
"""The degrees of freedom of the distribution.
This controls the degrees of freedom of the distribution. The tails of the
distribution get more heavier the smaller `df` is. As `df` goes to
infinitiy, the distribution approaches the Multivariate Normal with the same
`loc` and `scale`.
Returns:
The `df` `Tensor`.
"""
return self._df
def _batch_shape_tensor(self):
shape_list = [
self.scale.batch_shape_tensor(),
tf.shape(self.df),
tf.shape(self.loc)[:-1]
]
return functools.reduce(tf.broadcast_dynamic_shape, shape_list)
def _batch_shape(self):
shape_list = [self.scale.batch_shape, self.df.shape, self.loc.shape[:-1]]
return functools.reduce(tf.broadcast_static_shape, shape_list)
def _event_shape_tensor(self):
return self.scale.range_dimension_tensor()[tf.newaxis]
def _event_shape(self):
return self.scale.range_dimension
def _sample_shape(self):
return tf.concat([self.batch_shape_tensor(), self.event_shape_tensor()], -1)
def _sample_n(self, n, seed=None):
# Like with the univariate Student's t, sampling can be implemented as a
# ratio of samples from a multivariate gaussian with the appropriate
# covariance matrix and a sample from the chi-squared distribution.
normal_seed, chi2_seed = samplers.split_seed(seed, salt='multivariate t')
loc = tf.broadcast_to(self.loc, self._sample_shape())
mvn = mvn_linear_operator.MultivariateNormalLinearOperator(
loc=tf.zeros_like(loc), scale=self.scale)
normal_samp = mvn.sample(n, seed=normal_seed)
df = tf.broadcast_to(self.df, self.batch_shape_tensor())
chi2 = chi2_lib.Chi2(df=df)
chi2_samp = chi2.sample(n, seed=chi2_seed)
return (self._loc +
normal_samp * tf.math.rsqrt(chi2_samp / self._df)[..., tf.newaxis])
def _log_normalization(self):
df = tf.convert_to_tensor(self.df)
num_dims = tf.cast(self.event_shape_tensor()[0], self.dtype)
return (tfp_math.log_gamma_difference(num_dims / 2., df / 2.) +
num_dims / 2. * (tf.math.log(df) + np.log(np.pi)) +
self.scale.log_abs_determinant())
def _log_unnormalized_prob(self, value):
df = tf.convert_to_tensor(self.df)
value = value - self._loc
value = self.scale.solve(value[..., tf.newaxis])
num_dims = tf.cast(self.event_shape_tensor()[0], self.dtype)
mahalanobis = tf.norm(value, axis=[-1, -2])
return -(num_dims + df) / 2. * tfp_math.log1psquare(
mahalanobis / tf.sqrt(df))
def _log_prob(self, value):
return self._log_unnormalized_prob(value) - self._log_normalization()
@distribution_util.AppendDocstring(
"""The mean of Student's T equals `loc` if `df > 1`, otherwise it is
`NaN`. If `self.allow_nan_stats=False`, then an exception will be raised
rather than returning `NaN`.""")
def _mean(self):
mean = tf.broadcast_to(self.loc, self._sample_shape())
if self.allow_nan_stats:
return tf.where(
self.df[..., tf.newaxis] > 1., mean,
dtype_util.as_numpy_dtype(self.dtype)(np.nan))
else:
with tf.control_dependencies([
assert_util.assert_less(
tf.cast(1., self.dtype),
self.df,
message='Mean not defined for components of df <= 1.'),
]):
return tf.identity(mean)
def _mode(self):
return tf.broadcast_to(self.loc, self._sample_shape())
def _std_var_helper(self, statistic, statistic_name, statistic_ndims,
df_factor_fn):
"""Helper to compute stddev, covariance and variance."""
df = tf.reshape(
self.df,
tf.concat(
[tf.shape(self.df),
tf.ones([statistic_ndims], dtype=tf.int32)], -1))
# We need to put the tf.where inside the outer tf.where to ensure we never
# hit a NaN in the gradient.
denom = tf.where(df > 2., df - 2., dtype_util.as_numpy_dtype(df.dtype)(1.))
statistic = statistic * df_factor_fn(df / denom)
# When 1 < df <= 2, stddev/variance are infinite.
result_where_defined = tf.where(
df > 2., statistic, dtype_util.as_numpy_dtype(self.dtype)(np.inf))
if self.allow_nan_stats:
return tf.where(df > 1., result_where_defined,
dtype_util.as_numpy_dtype(self.dtype)(np.nan))
else:
with tf.control_dependencies([
assert_util.assert_less(
tf.cast(1., self.dtype),
df,
message='{} not defined for components of df <= 1.'.format(
statistic_name.capitalize())),
]):
return tf.identity(result_where_defined)
@distribution_util.AppendDocstring("""
The covariance for Multivariate Student's t equals
```
scale @ scale.T * df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1
```
If `self.allow_nan_stats=False`, then an exception will be raised
rather than returning `NaN`.""")
def _covariance(self):
if distribution_util.is_diagonal_scale(self.scale):
mvn_cov = tf.linalg.diag(tf.square(self.scale.diag_part()))
else:
mvn_cov = self.scale.matmul(self.scale.to_dense(), adjoint_arg=True)
cov_shape = tf.concat(
[self._sample_shape(), self._event_shape_tensor()], -1)
mvn_cov = tf.broadcast_to(mvn_cov, cov_shape)
return self._std_var_helper(mvn_cov, 'covariance', 2, lambda x: x)
@distribution_util.AppendDocstring("""
The variance for Student's T equals
```none
diag(scale @ scale.T) * df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1
```
If `self.allow_nan_stats=False`, then an exception will be raised
rather than returning `NaN`.""")
def _variance(self):
if distribution_util.is_diagonal_scale(self.scale):
mvn_var = tf.square(self.scale.diag_part())
elif (isinstance(self.scale, tf.linalg.LinearOperatorLowRankUpdate) and
self.scale.is_self_adjoint):
mvn_var = tf.linalg.diag_part(self.scale.matmul(self.scale.to_dense()))
else:
mvn_var = tf.linalg.diag_part(
self.scale.matmul(self.scale.to_dense(), adjoint_arg=True))
mvn_var = tf.broadcast_to(mvn_var, self._sample_shape())
return self._std_var_helper(mvn_var, 'variance', 1, lambda x: x)
@distribution_util.AppendDocstring("""
The standard deviation for Student's T equals
```none
sqrt(diag(scale @ scale.T)) * df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1
```
""")
def _stddev(self):
if distribution_util.is_diagonal_scale(self.scale):
mvn_std = tf.abs(self.scale.diag_part())
elif (isinstance(self.scale, tf.linalg.LinearOperatorLowRankUpdate) and
self.scale.is_self_adjoint):
mvn_std = tf.sqrt(
tf.linalg.diag_part(self.scale.matmul(self.scale.to_dense())))
else:
mvn_std = tf.sqrt(
tf.linalg.diag_part(
self.scale.matmul(self.scale.to_dense(), adjoint_arg=True)))
mvn_std = tf.broadcast_to(mvn_std, self._sample_shape())
return self._std_var_helper(mvn_std, 'standard deviation', 1, tf.sqrt)
def _entropy(self):
df = tf.broadcast_to(self.df, self.batch_shape_tensor())
num_dims = tf.cast(self.event_shape_tensor()[0], self.dtype)
shape_factor = self._scale.log_abs_determinant()
beta_factor = (num_dims / 2. * (tf.math.log(df) + np.log(np.pi)) +
tfp_math.log_gamma_difference(num_dims / 2., df / 2.))
digamma_factor = (num_dims + df) / 2. * (
tf.math.digamma((num_dims + df) / 2.) - tf.math.digamma(df / 2.))
return shape_factor + beta_factor + digamma_factor
def _default_event_space_bijector(self):
return identity_bijector.Identity(validate_args=self.validate_args)
def _parameter_control_dependencies(self, is_init):
if not self.validate_args:
return []
assertions = []
if is_init != tensor_util.is_ref(self._df):
assertions.append(assert_util.assert_positive(
self._df, message='Argument `df` must be positive.'))
return assertions