-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Conv2D.ts
109 lines (96 loc) · 4.31 KB
/
Conv2D.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {backend_util, Conv2D, Conv2DAttrs, Conv2DInputs, KernelConfig, KernelFunc, TensorBuffer, TensorInfo, TypedArray, util} from '@tensorflow/tfjs-core';
import {MathBackendCPU} from '../backend_cpu';
import {assertNotComplex} from '../cpu_util';
export function conv2D(
args: {inputs: Conv2DInputs, backend: MathBackendCPU, attrs: Conv2DAttrs}):
TensorInfo {
const {inputs, backend, attrs} = args;
const {x, filter} = inputs;
const {strides, pad, dataFormat, dilations, dimRoundingMode} = attrs;
assertNotComplex([x, filter], 'conv2d');
const $dataFormat = backend_util.convertConv2DDataFormat(dataFormat);
const convInfo = backend_util.computeConv2DInfo(
x.shape as [number, number, number, number],
filter.shape as [number, number, number, number], strides, dilations, pad,
dimRoundingMode, false /* depthwise */, $dataFormat);
const filterHeight = convInfo.filterHeight;
const filterWidth = convInfo.filterWidth;
const dilationHeight = convInfo.dilationHeight;
const dilationWidth = convInfo.dilationWidth;
const padLeft = convInfo.padInfo.left;
const padTop = convInfo.padInfo.top;
const isChannelsLast = convInfo.dataFormat === 'channelsLast';
const y = new TensorBuffer(convInfo.outShape, x.dtype as 'float32');
const xStrides = util.computeStrides(x.shape);
const filterStrides = util.computeStrides(filter.shape);
const xBatchStride = xStrides[0];
const xRowStride = isChannelsLast ? xStrides[1] : xStrides[2];
const xColStride = isChannelsLast ? xStrides[2] : 1;
const xChannelStride = isChannelsLast ? 1 : xStrides[1];
const yBatchStride = y.strides[0];
const yRowStride = isChannelsLast ? y.strides[1] : y.strides[2];
const yColStride = isChannelsLast ? y.strides[2] : 1;
const yChannelStride = isChannelsLast ? 1 : y.strides[1];
const xVals = backend.data.get(x.dataId).values as TypedArray;
const wVals = backend.data.get(filter.dataId).values as TypedArray;
const yVals = y.values;
for (let b = 0; b < convInfo.batchSize; ++b) {
const xOffset1 = b * xBatchStride;
const yOffset1 = b * yBatchStride;
for (let yR = 0; yR < convInfo.outHeight; ++yR) {
const yOffset2 = yOffset1 + yR * yRowStride;
const xRCorner = yR * convInfo.strideHeight - padTop;
for (let wR = 0; wR < filterHeight; ++wR) {
const xR = xRCorner + wR * dilationHeight;
if (xR < 0 || xR >= convInfo.inHeight) {
continue;
}
const wOffset1 = wR * filterStrides[0];
const xOffset2 = xOffset1 + xR * xRowStride;
for (let yC = 0; yC < convInfo.outWidth; ++yC) {
const yOffset3 = yOffset2 + yC * yColStride;
const xCCorner = yC * convInfo.strideWidth - padLeft;
for (let wC = 0; wC < filterWidth; ++wC) {
const xC = xCCorner + wC * dilationWidth;
if (xC < 0 || xC >= convInfo.inWidth) {
continue;
}
const wOffset2 = wOffset1 + wC * filterStrides[1];
const xOffset3 = xOffset2 + xC * xColStride;
let wOffset3 = wOffset2;
for (let d1 = 0; d1 < convInfo.inChannels; ++d1) {
const xVal = xVals[xOffset3 + d1 * xChannelStride];
for (let d2 = 0; d2 < convInfo.outChannels; ++d2) {
yVals[yOffset3 + d2 * yChannelStride] +=
xVal * wVals[wOffset3 + d2];
}
wOffset3 += convInfo.outChannels;
}
}
}
}
}
}
return backend.makeTensorInfo(y.shape, y.dtype, yVals);
}
export const conv2DConfig: KernelConfig = {
kernelName: Conv2D,
backendName: 'cpu',
kernelFunc: conv2D as unknown as KernelFunc
};