RecZilla
is a framework which provides the functionality to perform metalearning for algorithm selection on recommender systems datasets. It uses a meta-learner model to predict the best algorithm and hyperparameters for new, unseen datasets.
See our paper at https://arxiv.org/abs/2206.11886.
The figure below shows the overview of the end-to-end RecZilla
framework pipeline.
This repository is based on the public repository RecSys2019_DeepLearning_Evaluation. We use several core functions of this codebase---for training and evaluating algorithms, and for reading and splitting datasets. This repo extends the original in several ways:
- Data_manager/: added several datasets, and added a global timestamp splitting function
- Experiment_handler/: added classes and scripts for training and evaluating recsys algorithms on datasets
- Metafeatures/: added classess and scripts for calculating metafeatures of recsys datasets
- ParameterTuning/: added a
ParameterSpace
class andRandomSearch
class for random hyperparameter search - ReczillaClassifier/: added classes and scripts for training and using a recsys meta-model
- algorithm_handler.py: added a function for accessing all implemented algorithms and their hyperparameter spaces
- dataset_handler.py: added a function for accessing all implemented datasets
- removed several large dataset files from the repo
- made several small changes and bug fixes to support our experiments
NOTE: unless specified otherwise, all code should be run from the directory reczilla/RecSys2019_DeepLearning_Evaluation/
You need Python 3.6 to use this repository.
You can start by first creating a new environment using conda
or your preferred method.
# using conda
conda create -n DLevaluation python=3.6 anaconda
conda activate DLevaluation
Once you're done with the above step, you need to install all the dependencies in the requirements.txt
file using,
pip install -r requirements.txt
Next step, you need to compile all the Cython algorithms. For that you will need to install gcc
and python3-dev
. You can install it on Linux as,
sudo apt install gcc
sudo apt-get install python3-dev
Once installed, you can compile all the Cython algorithms by running the below command in the RecSys2019_DeepLearning_Evaluation
directory,
python run_compile_all_cython.py
And you're all set!
Each recsys dataset is managed using an instance of class DataReader
in DataReader.py
. All datasets in our paper are implemented as custom subclasses of DataReader
objects---this object handles downloading, splitting, and i/o. In the current implementation datasets must be read using a DataReader
object.
Before using any recsys dataset for training, testing, or meta-learning tasks, you need to load the dataset by calling the load_data()
function of its `DataReader object. This function writes a version of the dataset locally.
Each dataset used in our experiment has a custom DataReader
class; a list of these classes can be found in Data_manager.dataset_handler.DATASET_READER_LIST
. For example, the following python code downloads the Movielens100K
dataset to a local folder, creates a global-timestamp split, and saves the split in a different folder:
from Data_manager.Movielens.Movielens100KReader import Movielens100KReader
# Folder where dataset will be loaded from. The dataset will be downloaded if it's not found here.
data_folder = "/home/datasets"
# load the dataset
data_reader = Movielens100KReader(folder=data_folder)
loaded_dataset = data_reader.load_data()
expected output
Movielens100K: reload_from_original_data is 'as-needed', will only reload original data if it cannot be found.
Movielens100K: Preloaded data not found, reading from original files...
Movielens100K: Loading original data
Movielens100K: Unable to fild data zip file. Downloading...
Downloading: http://files.grouplens.org/datasets/movielens/ml-100k.zip
In folder: /code/reczilla/RecSys2019_DeepLearning_Evaluation/Data_manager/../Data_manager_split_datasets/Movielens100K/ml-100k.zip
DataReader: Downloaded 100.00%, 4.70 MB, 922 KB/s, 5 seconds passed
Movielens100K: cleaning temporary files
Movielens100K: loading complete
Movielens100K: Verifying data consistency...
Movielens100K: Verifying data consistency... Passed!
Movielens100K: Found already existing folder '/home/datasets'
Movielens100K: Saving complete!
Now, the dataset Moviekens100K
has been downloaded to folder /home/datasets
. The following python code creates a global timestamp split for this dataset:
from Data_manager.DataSplitter_global_timestamp import DataSplitter_global_timestamp
# Folder where dataset splits will be written
split_folder = "/home/splits/MovieLens100K"
# split the dataset, and write it to file
data_splitter = DataSplitter_global_timestamp(data_reader)
data_splitter.load_data(save_folder_path=split_folder)
expected output
DataSplitter_global_timestamp: Cold users not allowed
DataSplitter_global_timestamp: Preloaded data not found, reading from original files...
Movielens100K: Verifying data consistency...
Movielens100K: Verifying data consistency... Passed!
split_data_on_global_timestamp: 192 cold users of total 943 users skipped
DataSplitter_global_timestamp: Split complete
DataSplitter_global_timestamp: Verifying data consistency...
DataSplitter_global_timestamp: Verifying data consistency... Passed!
DataSplitter_global_timestamp: Preloaded data not found, reading from original files... Done
DataSplitter_global_timestamp: DataReader: Movielens100K
Num items: 1682
Num users: 751
Train interactions 79999, density 6.33E-02
Validation interactions 1535, density 1.22E-03
Test interactions 1418, density 1.12E-03
DataSplitter_global_timestamp:
DataSplitter_global_timestamp: Done.
Now, the global timestamp split of Movielens100K
has been written to /home/splits/MovieLens100K
.
The script Data_manager.create_all_data_splits
runs the above procedure on all datasets used in our experiments:
usage: create_all_data_splits.py [-h] --data-dir DATA_DIR --splits-dir
SPLITS_DIR
arguments:
--data-dir DATA_DIR Directory where the downloaded dataseta have been
stored. If a dataset is not downloaded, it will be
downloaded.
--splits-dir SPLITS_DIR
Directory where the splits will be saved.
To load a recsys dataset that is not currently implemented, you need to create a subclass of Data_manager.DataReader
, which specifies the loading procedure for the dataset. Once you create a DataReader
for your dataset, you can use the same splitting and loading process from above.
If the dataset is in CSV format with columns user_id, item_id, rating, timestamp
, then it is simple to create a class based on the example class ExampleCSVDatasetReader
, which loads a dataset from a sample CSV included in this repository.
This class reads a CSV from a fixed path, and loads it using shared functions:
#### from Dataset_manager/ExampleCSVDataset/ExampleCSVDatasetReader.py
...
URM_path = "../examples/random_rating_list.csv"
(
URM_all,
URM_timestamp,
item_original_ID_to_index,
user_original_ID_to_index,
) = load_CSV_into_SparseBuilder(
URM_path, separator=",", header=True, remove_duplicates=True, timestamp=True
)
loaded_URM_dict = {"URM_all": URM_all, "URM_timestamp": URM_timestamp}
loaded_dataset = Dataset(
dataset_name=self._get_dataset_name(),
URM_dictionary=loaded_URM_dict,
ICM_dictionary=None,
ICM_feature_mapper_dictionary=None,
UCM_dictionary=None,
UCM_feature_mapper_dictionary=None,
user_original_ID_to_index=user_original_ID_to_index,
item_original_ID_to_index=item_original_ID_to_index,
is_implicit=self.IS_IMPLICIT,
)
...
The main results from our paper are based on a "meta-dataset", which consists of performance metrics for a large number of parameterized recsys algorithms on all recsys datasets implemented in this codebase.
To generate results for each algorithm-dataset pair, we use the script Experiment_handler.run_experiment
, which takes several positional arguments:
usage: run_experiment.py [-h]
time_limit dataset_name split_type alg_name split_dir
alg_seed param_seed num_samples result_dir
experiment_name original_split_path
positional arguments:
time_limit time limit in seconds
dataset_name name of dataset. we use this to find the dataset and
split.
split_type name of datasplitter to use. we use this to find the
split directory.
alg_name name of the algorithm to use.
split_dir directory containing split data files.
alg_seed random seed passed to the recommender algorithm. only
for random algorithms.
param_seed random seed for generating random hyperparameters.
num_samples number of hyperparameter samples.
result_dir directory where result dir structure will be written.
this directory should exist.
experiment_name name of the result directory that will be created.
original_split_path full path to the split data. only used for bookkeeping.
For example, the following call trains and evaluates 5 hyperparameter samples for algorithm P3alphaRecommender
, using the split created in the previous section. The results of this experiment will be written to /home/results
.
# first, create a directory to write results in
mkdir ./example-results
python -m Experiment_handler.run_experiment \
7200 \
Movielens100K \
DataSplitter_global_timestamp \
P3alphaRecommender \
/home/splits/MovieLens100K \
0 \
0 \
5 \
./example-results \
example-experiment \
original-split-path
output
[2022-06-21 12:06:57,142] [Experiment.py:__init__] : initializing Experiment: base_directory=/code/reczilla/RecSys2019_DeepLearning_Evaluation/example-results, result_directory=/code/reczilla/RecSys2019_DeepLearning_Evaluation/example-results/example-experiment, data_directory=None
[2022-06-21 12:06:57,143] [Experiment.py:__init__] : found result directory: /code/reczilla/RecSys2019_DeepLearning_Evaluation/example-results/example-experiment
[2022-06-21 12:06:57,143] [Experiment.py:prepare_dataset] : initialized dataset in Movielens100K
[2022-06-21 12:06:57,254] [Experiment.py:prepare_split] : found a split in directory /home/splits/MovieLens100K_splits
[2022-06-21 12:06:57,254] [Experiment.py:prepare_split] : initialized split Movielens100K/DataSplitter_global_timestamp
[2022-06-21 12:06:57,254] [Experiment.py:run_experiment] : WARNING: URM_validation not found in URM_dict for split Movielens100K/DataSplitter_global_timestamp
EvaluatorHoldout: Ignoring 81 (89.2%) Users that have less than 1 test interactions
EvaluatorHoldout: Ignoring 69 (90.8%) Users that have less than 1 test interactions
[2022-06-21 12:06:57,257] [Experiment.py:run_experiment] : starting experiment, writing results to example-results
[2022-06-21 12:06:57,292] [RandomSearch.py:_log_info] : RandomSearch: Starting parameter set
P3alphaRecommender: URM Detected 66 (3.92 %) cold items.
EvaluatorHoldout: Processed 81 (100.0%) in 0.34 sec. Users per second: 240
EvaluatorHoldout: Processed 69 (100.0%) in 0.32 sec. Users per second: 213
DataIO: Json dumps supports only 'str' as dictionary keys. Transforming keys to string, note that this will alter the mapper content.
[2022-06-21 12:06:58,182] [RandomSearch.py:_log_info] : RandomSearch: Starting parameter set 1 of 5
P3alphaRecommender: URM Detected 66 (3.92 %) cold items.
EvaluatorHoldout: Processed 81 (100.0%) in 0.33 sec. Users per second: 243
EvaluatorHoldout: Processed 69 (100.0%) in 0.30 sec. Users per second: 227
[2022-06-21 12:07:00,094] [RandomSearch.py:_log_info] : RandomSearch: Starting parameter set 2 of 5
P3alphaRecommender: URM Detected 66 (3.92 %) cold items.
EvaluatorHoldout: Processed 81 (100.0%) in 0.32 sec. Users per second: 250
EvaluatorHoldout: Processed 69 (100.0%) in 0.31 sec. Users per second: 221
[2022-06-21 12:07:01,058] [RandomSearch.py:_log_info] : RandomSearch: Starting parameter set 3 of 5
P3alphaRecommender: URM Detected 66 (3.92 %) cold items.
EvaluatorHoldout: Processed 81 (100.0%) in 0.38 sec. Users per second: 215
EvaluatorHoldout: Processed 69 (100.0%) in 0.31 sec. Users per second: 220
[2022-06-21 12:07:02,465] [RandomSearch.py:_log_info] : RandomSearch: Starting parameter set 4 of 5
P3alphaRecommender: URM Detected 66 (3.92 %) cold items.
EvaluatorHoldout: Processed 81 (100.0%) in 0.33 sec. Users per second: 248
EvaluatorHoldout: Processed 69 (100.0%) in 0.27 sec. Users per second: 257
[2022-06-21 12:07:04,678] [RandomSearch.py:_log_info] : RandomSearch: Search complete. Output written to: example-results/
[2022-06-21 12:07:04,684] [Experiment.py:run_experiment] : results written to file: example-results/result_20220621_120657_metadata.zip
initial result file: example-results/result_20220621_120657_metadata.zip
renaming to: example-results/result.zip
There are two files of interest created by this experiment script, both written to the results folder provided (example-results
):
- a log file with namning convention
result_yyyymmdd_hhmmss_RandomSearch.txt
- the hyperparameters and evaluation metrics, stored in a zip archive named
result.zip
The main script for meta-learning is run_reczilla.py
, which must be run from the folder RecSys2019_DeepLearning_Evaluation
. This script has two functions: (1) to train a new meta-model, and (2) use a pre-trained meta-model to train a new recommender on a dataset; both of these tasks can be performmed in the same call.
The script takes in these arguments:
> python -m ReczillaClassifier.run_reczilla -h
usage: run_reczilla.py [-h] [--train_meta] --metamodel_filepath
METAMODEL_FILEPATH
[--dataset_split_path DATASET_SPLIT_PATH]
[--rec_model_save_path REC_MODEL_SAVE_PATH]
[--metadataset_name METADATASET_NAME]
[--metamodel_name {xgboost,knn,linear,svm-poly}]
[--target_metric TARGET_METRIC]
[--num_algorithms NUM_ALGORITHMS]
[--num_metafeatures NUM_METAFEATURES]
Run Reczilla on a new dataset.
optional arguments:
-h, --help show this help message and exit
--train_meta Use to train a new metalearner Reczilla model (instead
of loading).
--metamodel_filepath METAMODEL_FILEPATH
Filepath of Reczilla model (to save or load).
--dataset_split_path DATASET_SPLIT_PATH
Path of dataset split to perform inference on. Only
required if performing inference
--rec_model_save_path REC_MODEL_SAVE_PATH
Destination path for recommender model trained on
dataset on dataset_split_path.
--metadataset_name METADATASET_NAME
Name of metadataset (required if training metamodel).
--metamodel_name {xgboost,knn,linear,svm-poly}
Name of metalearner to use (required if training
metamodel).
--target_metric TARGET_METRIC
Target metric to optimize.
--num_algorithms NUM_ALGORITHMS
Number of algorithms to use in Reczilla (required if
training metamodel).
--num_metafeatures NUM_METAFEATURES
Number of metafeatures to select for metalearner.
The following files are required for training a new metamodel. Both of these files can be downloaded from a public Google drive folder, here:
Metafeatures.csv
: The dataset metafeatures. Note: This file must be placed in the local directoryreczilla/RecSys2019_DeepLearning_Evaluation/Metafeatures/
metadata-v2.pkl
: performance metadataset, containing performance metrics of algorithms on each recsys dataset. Note: this file must be placed in the local directoryreczilla/RecSys2019_DeepLearning_Evaluation/metadatasets/
The script train_reczilla_models.sh
shows samples for training metalearners for different metrics. The script does the following:
- Creates a directory
ReczillaModels
to save new meta-models - Trains a metamodel for precision @ 10 and saves it to
ReczillaModels/prec_10.pickle
- Trains a metamodel for training time and saves it to
ReczillaModels/time_on_train.pickle
- Trains a metamodel for MRR @ 10 and saves it to
ReczillaModels/mrr_10.pickle
- Trains a metamodel for item hit coverage @ 10 and saves it to
ReczillaModels/item_hit_cov.pickle
For this script, the expected output should be similar to the following:
python -m ReczillaClassifier.run_reczilla --train_meta --metamodel_filepath="../ReczillaModels/prec_10.pickle" --target_metric="PRECISION_cut_10" --num_algorithms=10 --num_metafeatures=10
selecting algs and features..
done selecting algs in : 0:00:21.533609
Computing correlations...
done selecting features in : 0:00:02.300044
Metamodel saved to ../ReczillaModels/prec_10.pickle
python -m ReczillaClassifier.run_reczilla --train_meta --metamodel_filepath="../ReczillaModels/time_on_train.pickle" --target_metric="time_on_train" --num_algorithms=10 --num_metafeatures=10
selecting algs and features..
done selecting algs in : 0:00:25.295785
Computing correlations...
done selecting features in : 0:00:02.587050
Metamodel saved to ../ReczillaModels/time_on_train.pickle
python -m ReczillaClassifier.run_reczilla --train_meta --metamodel_filepath="../ReczillaModels/mrr_10.pickle" --target_metric="MRR_cut_10" --num_algorithms=10 --num_metafeatures=10
selecting algs and features..
done selecting algs in : 0:00:15.817387
Computing correlations...
done selecting features in : 0:00:01.631595
Metamodel saved to ../ReczillaModels/mrr_10.pickle
python -m ReczillaClassifier.run_reczilla --train_meta --metamodel_filepath="../ReczillaModels/item_hit_cov.pickle" --target_metric="COVERAGE_ITEM_HIT_cut_10" --num_algorithms=10 --num_metafeatures=10
selecting algs and features..
done selecting algs in : 0:00:20.211772
Computing correlations...
done selecting features in : 0:00:03.447911
Metamodel saved to ../ReczillaModels/item_hit_cov.pickle
A sample script to perform inference on a new dataset is provided in run_reczilla_inference.sh
. It uses pre-trained Reczilla models (located in the folder ReczillaModels
) to select and train a recommender on a dataset specified on a path. This script can be modified to run inference on new datasets.
The only required files for execution is a pre-trained metamodel and a dataset to perform inference on. In the case of run_reczilla_inference.sh
, these correspond to:
ReczillaModels/prec_10.pickle
(metamodel)ReczillaModels/time_on_train.pickle
(metamodel)all_data/splits-v5/AmazonGiftCards/DataSplitter_leave_k_out_last
(folder with dataset split to perform inference on)
The script does the following:
- Use the pre-trained precision @ 10 meta-model to select an algorithm to train on the dataset under
all_data/splits-v5/AmazonGiftCards/DataSplitter_leave_k_out_last
, and saves the recommender to a zip file with the prefixprec_10_
. - Use the pre-trained time on train meta-model to select an algorithm to train on the dataset under
all_data/splits-v5/AmazonGiftCards/DataSplitter_leave_k_out_last
, and saves the recommender to a zip file with the prefixtrain_time_
.
For example, the following command does the following:
- reads the
Movielens100K
dataset split created earlier in this README - reads the meta-model
ReczillaModels/prec_10.pickle
created in the example above - estimates the best parameterized recsys algorithm for the
Movielens100K
training split, using theprec_10.pickle
metamodel - trains this parameterized recsys algorithm on the
Movielens100K
training split, and saves the trained model to file../prec_10_{model name}.zip
.
python -m ReczillaClassifier.run_reczilla \
--dataset_split_path="/home/splits/MovieLens100K" \
--metamodel_filepath="../ReczillaModels/prec_10.pickle" \
--rec_model_save_path="../prec_10_"
expected output
Loading metamodel from ../ReczillaModels/prec_10.pickle
DataSplitter_global_timestamp: Cold users not allowed
DataSplitter_global_timestamp: Verifying data consistency...
DataSplitter_global_timestamp: Verifying data consistency... Passed!
DataSplitter_global_timestamp: DataReader: Movielens100K
Num items: 1682
Num users: 751
Train interactions 79999, density 6.33E-02
Validation interactions 1535, density 1.22E-03
Test interactions 1418, density 1.12E-03
DataSplitter_global_timestamp:
DataSplitter_global_timestamp: Done.
EvaluatorHoldout: Processed 100 (100.0%) in 0.05 sec. Users per second: 1966
Similarity column 100 (100.0%), 68255.56 column/sec. Elapsed time 0.00 sec
EvaluatorHoldout: Processed 100 (100.0%) in 0.05 sec. Users per second: 2009
DataSplitter_global_timestamp: Cold users not allowed
DataSplitter_global_timestamp: Verifying data consistency...
DataSplitter_global_timestamp: Verifying data consistency... Passed!
DataSplitter_global_timestamp: DataReader: Movielens100K
Num items: 1682
Num users: 751
Train interactions 79999, density 6.33E-02
Validation interactions 1535, density 1.22E-03
Test interactions 1418, density 1.12E-03
DataSplitter_global_timestamp:
DataSplitter_global_timestamp: Done.
Chose IALSRecommender:random_25 for PRECISION_cut_10 with predicted value 0.015277831815183163
IALSRecommender: URM Detected 66 (3.92 %) cold items.
IALSRecommender: Epoch 1 of 300. Elapsed time 0.28 sec
IALSRecommender: Epoch 2 of 300. Elapsed time 0.51 sec
IALSRecommender: Epoch 3 of 300. Elapsed time 0.75 sec
...
IALSRecommender: Epoch 299 of 300. Elapsed time 1.33 min
IALSRecommender: Epoch 300 of 300. Elapsed time 1.34 min
IALSRecommender: Terminating at epoch 300. Elapsed time 1.34 min
EvaluatorHoldout: Ignoring 69 (90.8%) Users that have less than 1 test interactions
EvaluatorHoldout: Processed 69 (100.0%) in 0.04 sec. Users per second: 1653
**************************************************
Done training recommender. Summary:
Metric to optimize: PRECISION_cut_10
Chosen algorithm: IALSRecommender:random_25
Predicted performance: 0.015277831815183163
Actual performance: 0.013043478260869566
**************************************************
IALSRecommender: Saving model in file '../prec_10_IALSRecommender'
IALSRecommender: Saving complete
Please cite our work if you use code from this repo:
@article{reczilla-2022,
title={On the Generalizability and Predictability of Recommender Systems},
author={McElfresh, Duncan and Khandagale, Sujay and Valverde, Jonathan and Dickerson, John P. and White, Colin},
journal={arXiv preprint arXiv:2206.11886},
year={2022},
}