-
Notifications
You must be signed in to change notification settings - Fork 417
/
Copy pathlstm-for-epf.py
51 lines (35 loc) · 1.76 KB
/
lstm-for-epf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from tensorflow.contrib import learn
from sklearn.metrics import mean_squared_error, mean_absolute_error
from lstm_predictor import generate_data, load_csvdata, lstm_model
LOG_DIR = './ops_logs'
TIMESTEPS = 10
RNN_LAYERS = [{'steps': TIMESTEPS}]
DENSE_LAYERS = [10, 10]
TRAINING_STEPS = 100000
BATCH_SIZE = 100
PRINT_STEPS = TRAINING_STEPS / 100
dateparse = lambda dates: pd.datetime.strptime(dates, '%d/%m/%Y %H:%M')
rawdata = pd.read_csv("./input/ElectricityPrice/RealMarketPriceDataPT.csv",
parse_dates={'timeline': ['date', '(UTC)']},
index_col='timeline', date_parser=dateparse)
X, y = load_csvdata(rawdata, TIMESTEPS, seperate=False)
regressor = learn.TensorFlowEstimator(model_fn=lstm_model(TIMESTEPS, RNN_LAYERS, DENSE_LAYERS),
n_classes=0,
verbose=1,
steps=TRAINING_STEPS,
optimizer='Adagrad',
learning_rate=0.03,
batch_size=BATCH_SIZE)
validation_monitor = learn.monitors.ValidationMonitor(X['val'], y['val'],
every_n_steps=PRINT_STEPS,
early_stopping_rounds=1000)
regressor.fit(X['train'], y['train'], monitors=[validation_monitor], logdir=LOG_DIR)
predicted = regressor.predict(X['test'])
mse = mean_absolute_error(y['test'], predicted)
print ("Error: %f" % mse)
plot_predicted, = plt.plot(predicted, label='predicted')
plot_test, = plt.plot(y['test'], label='test')
plt.legend(handles=[plot_predicted, plot_test])