-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathqa_task.py
461 lines (392 loc) · 22.7 KB
/
qa_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
import numpy as np
import pickle
import time
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__))+'/../')
from vdnc import VariationalDNC as DNC
from recurrent_controller import StatelessRecurrentController
import data_util
import plot_tool
import random
random.seed(time.time())
TOTAL_ANNEAL_EPOCH=100
def llprint(message):
sys.stdout.write(message)
sys.stdout.flush()
def load(path):
return pickle.load(open(path, 'rb'))
def single_qa_task(args):
dirname = os.path.dirname(os.path.abspath(__file__)) + '/data/save/'
print(dirname)
ckpts_dir = os.path.join(dirname, 'checkpoints_qa_{}'.format(args.task))
llprint("Loading Data ... ")
llprint("Done!\n")
str2tok, tok2str, dialogs = pickle.load(open(args.data_dir, 'rb'))
all_index = list(range(len(dialogs)))
train_index = all_index[:int(len(dialogs) - args.valid_size*2)]
valid_index = all_index[int(len(dialogs) - args.valid_size):int(len(dialogs) * 1)]
test_index = all_index[int(len(dialogs) - args.valid_size*2):int(len(dialogs) -args.valid_size)]
dialogs_list_train = [dialogs[i] for i in train_index]
dialogs_list_valid = [dialogs[i] for i in valid_index]
dialogs_list_test = [dialogs[i] for i in test_index]
print('num_dialogs {}'.format(len(dialogs)))
print('num train {}'.format(len(dialogs_list_train)))
print('num valid {}'.format(len(dialogs_list_valid)))
print('num test {}'.format(len(dialogs_list_test)))
print('dim in {} {}'.format(len(str2tok), len(str2tok)))
print('dim out {}'.format(len(str2tok)))
batch_size = args.batch_size
input_size = len(str2tok)
output_size = len(str2tok)
words_count = args.mem_size
word_size = args.word_size
learning_rate = args.learning_rate
momentum = 0.9
iterations = args.iterations
start_step = 0
config = tf.ConfigProto()
config.intra_op_parallelism_threads = args.cpu_num
config.inter_op_parallelism_threads = args.cpu_num
config.gpu_options.allow_growth = True
# config.gpu_options.per_process_gpu_memory_fraction = args.gpu_ratio
graph = tf.Graph()
with graph.as_default():
with tf.Session(graph=graph, config=config) as session:
llprint("Building Computational Graph ... ")
ncomputer = DNC(
StatelessRecurrentController,
input_size,
output_size,
output_size,
words_count,
word_size,
1,
batch_size,
use_mem=args.use_mem,
dual_emb=False,
use_emb_encoder=True,
use_emb_decoder=True,
decoder_mode=True,
emb_size=args.emb_dim,
hidden_controller_dim=args.hidden_dim,
use_teacher=args.use_teacher,
attend_dim=args.attend,
enable_drop_out=args.drop_out_keep>0,
memory_read_heads_decode=args.num_mog_mode,
nlayer=args.nlayer,
name='VDNC',
gt_type=args.gt_type,
single_KL=args.single_KL,
KL_anneal=args.anneal_KL
)
optimizer = tf.train.RMSPropOptimizer(learning_rate, momentum=momentum)
# optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
_, prob, loss, apply_gradients, loss_rec, loss_kl, alpha = \
ncomputer.build_vloss_function_mask(optimizer, clip_s=10, total_epoch=TOTAL_ANNEAL_EPOCH)
llprint("Done!\n")
llprint("Done!\n")
llprint("Initializing Variables ... ")
session.run(tf.global_variables_initializer())
llprint("Done!\n")
if args.from_checkpoint is not '':
if args.from_checkpoint=='default':
from_checkpoint = ncomputer.print_config()
else:
from_checkpoint = args.from_checkpoint
llprint("Restoring Checkpoint %s ... " % from_checkpoint)
ncomputer.restore(session, ckpts_dir, from_checkpoint)
llprint("Done!\n")
mat = None
if args.use_pretrain_emb=='word2vec':
mat = data_util.load_word2vec(emb_dim=args.emb_dim, str2tok_dir=str2tok, init_zero=True)
elif args.use_pretrain_emb=='glove':
mat = data_util.loadGloVe(emb_dim=50, str2tok_dir=str2tok)
elif args.use_pretrain_emb=='glove':
mat = data_util.loadGloVe(emb_dim=50, str2tok_dir=str2tok)
ncomputer.assign_pretrain_emb_encoder(session,
mat)
ncomputer.assign_pretrain_emb_decoder(session,
mat)
elif args.use_pretrain_emb == 'word2vec':
mat = data_util.load_word2vec(emb_dim=args.emb_dim, str2tok_dir=str2tok)
ncomputer.assign_pretrain_emb_encoder(session,
mat)
ncomputer.assign_pretrain_emb_decoder(session,
mat)
last_100_losses = []
last_100_losses_rc = []
last_100_losses_kl = []
start = 1 if start_step == 0 else start_step + 1
end = start_step + iterations + 1
if args.mode == 'test' or args.mode == 'cherry_pick':
start=0
end = start
dialogs_list_valid = dialogs_list_test
elif args.mode == 'test_file':
start = 0
end = start
dialogs_list_valid = data_util.load_lines_from_file(args.test_file, str2tok)
start_time_100 = time.time()
avg_100_time = 0.
avg_counter = 0
if args.mode=='train':
log_dir = './data/summary/log_{}_{}/'.format(args.task, args.use_pretrain_emb)
if not os.path.isdir(log_dir):
os.mkdir(log_dir)
log_dir = '{}/{}/'.format(log_dir,ncomputer.print_config())
if not os.path.isdir(log_dir):
os.mkdir(log_dir)
train_writer = tf.summary.FileWriter(log_dir, session.graph)
min_tloss=0
alpha_v = 0
itersave=0
for i in range(start, end + 1):
try:
llprint("\rIteration %d/%d" % (i, end))
input_data, target_output, seq_len, decoder_length, masks,_, _ = \
data_util.prepare_sample_batch(dialogs_list_train, input_size, output_size, batch_size)
summerize = (i % args.valid_time == 0)
if args.mode == 'train':
loss_value, loss_vrec, loss_vkl, alpha_v, _ = session.run([
loss, loss_rec, loss_kl, alpha,
apply_gradients
], feed_dict={
ncomputer.input_encoder: input_data,
ncomputer.input_decoder: target_output,
ncomputer.target_output: target_output,
ncomputer.sequence_length: seq_len,
ncomputer.decode_length: decoder_length,
ncomputer.mask: masks,
ncomputer.teacher_force: ncomputer.get_bool_rand_incremental(decoder_length),
ncomputer.drop_out_keep: args.drop_out_keep,
ncomputer.testing_phase:False,
ncomputer.epochs:float(i*args.batch_size*(1.0/args.ratio_start_anneal)//len(dialogs_list_train))
})
last_100_losses.append(loss_value)
last_100_losses_rc.append(loss_vrec)
last_100_losses_kl.append(loss_vkl)
tloss=10000000
tpre=0
if summerize:
print('start summarize...')
llprint("\n\t episode %d -->Avg. Cross-Entropy: %.7f\n" % (i, np.mean(last_100_losses)))
print('avg.rec.loss: {}, avg.kl: {}. l.alpha: {}'.format(np.mean(last_100_losses_rc), np.mean(last_100_losses_kl), alpha_v))
trscores = []
if args.mode=='train':
summary = tf.Summary()
summary.value.add(tag='batch_train_loss', simple_value=np.mean(last_100_losses))
summary.value.add(tag='batch_train_recloss', simple_value=np.mean(last_100_losses_rc))
summary.value.add(tag='batch_train_kl', simple_value=np.mean(last_100_losses_kl))
for ii in range(5):
input_data, target_output, seq_len, decoder_length,masks, brout, brin = \
data_util.prepare_sample_batch(dialogs_list_train, input_size, output_size,
batch_size)
out, mem_view = session.run([prob, ncomputer.packed_memory_view_decoder], feed_dict={
ncomputer.input_encoder: input_data,
ncomputer.input_decoder: target_output,
ncomputer.target_output: target_output,
ncomputer.sequence_length: seq_len,
ncomputer.decode_length: decoder_length,
ncomputer.mask: masks,
ncomputer.teacher_force: ncomputer.get_bool_rand_incremental(decoder_length),
ncomputer.drop_out_keep: args.drop_out_keep,
ncomputer.testing_phase:False,
ncomputer.epochs:float(i*args.batch_size*(1.0/args.ratio_start_anneal)//len(dialogs_list_train))
})
out = np.reshape(np.asarray(out),[-1, decoder_length, output_size])
out = np.argmax(out, axis=-1)
bout_list = []
for b in range(out.shape[0]):
out_list = []
for io in range(out.shape[1]):
if out[b][io]==2:
break
out_list.append(out[b][io])
bout_list.append(out_list)
trscores.append(data_util.bleu_score(np.asarray(brin), np.asarray(brout),
np.asarray(bout_list), tok2str))
"""
#This is for visualization purpose
estr = ''
dstr = ''
for t in brin[0]:
estr += tok2str[t] + ' '
for tt in range(len(bout_list[0])):
# print(mem_view['dist1s'][0][tt])
# print(mem_view['dist2s'][0][tt])
print(mem_view['mixturews'][0][tt])
# print(mem_view['last_reads'][0][tt])
# print('---')
dstr += tok2str[bout_list[0][tt]] + ' '
# plot_tool.plot_mgauss(mem_view['dist2s'][0][tt],
# mem_view['mixturews'][0][tt],
# mem_view['dist1s'][0][tt])
# plot_tool.plot_tsne(mem_view['dist2s'][0][tt],
# mem_view['mixturews'][0][tt],
# mem_view['dist1s'][0][tt])
print('{}-->{}'.format(estr, dstr))
plot_tool.plot_tsne2(mem_view['dist2s'][0][:min(5, len(bout_list[0]))],
mem_view['mixturews'][0][:min(5, len(bout_list[0]))],
mem_view['dist1s'][0][:min(5, len(bout_list[0]))], dstr)
print('+++')
"""
print('done quick test train...')
tescores = []
tescores4 = []
bows = []
losses = []
losses2=[]
losses3 = []
all_out=[]
all_label=[]
ntb = len(dialogs_list_valid) // batch_size + 1
for ii in range(ntb):
# llprint("\r{}/{}".format(ii, ntb))
if ii * batch_size == len(dialogs_list_valid):
break
bs = [ii * batch_size, min((ii + 1) * batch_size, len(dialogs_list_valid))]
rs = bs[1] - bs[0]
if bs[1] >= len(dialogs_list_valid):
bs = [len(dialogs_list_valid) - batch_size, len(dialogs_list_valid)]
input_data, target_output, seq_len, decoder_length, masks, rout_list, rin_list = \
data_util.prepare_sample_batch(dialogs_list_valid, input_size, output_size, bs)
out, loss_v, lost_v_rec, loss_v_kl, mem_view = session.run([prob, loss, loss_rec, loss_kl, ncomputer.packed_memory_view_decoder],
feed_dict={ncomputer.input_encoder: input_data,
ncomputer.input_decoder: target_output,
ncomputer.target_output: target_output,
ncomputer.sequence_length: seq_len,
ncomputer.decode_length: decoder_length,
ncomputer.mask: masks,
ncomputer.teacher_force: ncomputer.get_bool_rand_incremental(decoder_length, prob_true_max=0),
ncomputer.drop_out_keep: 1,
ncomputer.testing_phase: True,
ncomputer.epochs: 1.0 * TOTAL_ANNEAL_EPOCH
})
losses.append(lost_v_rec)
losses2.append(loss_v_kl)
losses3.append(loss_v)
pout = np.reshape(np.asarray(out), [-1, decoder_length, output_size])
out = np.argmax(pout, axis=-1)
bout_list = []
for b in range(rs):
out_list = []
for io in range(out.shape[1]):
if out[b][io]==2:
break
out_list.append(out[b][io])
bout_list.append(out_list)
tescores.append(
data_util.bleu_score(np.asarray(rin_list)[:rs], np.asarray(rout_list)[:rs],
np.asarray(bout_list)[:rs], tok2str))
if args.mode == 'test':
tescores4.append(
data_util.bleu_score4(np.asarray(rin_list)[:rs], np.asarray(rout_list)[:rs],
np.asarray(bout_list)[:rs], tok2str, print_prob=0.8))
bows.append(data_util.bow_score(np.asarray(rin_list)[:rs],
np.asarray(rout_list)[:rs],
np.asarray(bout_list)[:rs], tok2str, mat))
all_out+=bout_list[:rs]
all_label+=rout_list[:rs]
if args.mode == 'test_file':
print('some predic')
print(len(all_out))
print(len(all_label))
for tt, tv in enumerate(all_out):
# print('{} vs {}'.format(dialogs_list_valid[tt][0], all_out[tt]))
str1=''
for c in dialogs_list_valid[tt][0]:
str1+=tok2str[c]+' '
str2 = ''
for c in all_out[tt]:
str2 += tok2str[c] + ' '
print('{} --> {}'.format(str1,str2))
print('---')
tloss=np.mean(losses)
tloss2 = np.mean(losses2)
tpre=np.mean(tescores)
print('tr score {} vs te store {}'.format(np.mean(trscores),tpre))
print('kl train {} vs kl test {}'.format(np.mean(last_100_losses_kl),tloss2))
if args.mode=='test':
tescores4=np.asarray(tescores4)
te4 = np.mean(tescores4,axis=0)
print('4 bleu')
print(te4)
print(np.mean(bows))
print('test loss {}'.format(tloss))
if args.mode=='train':
summary.value.add(tag='train_acc', simple_value=np.mean(trscores))
summary.value.add(tag='test_acc', simple_value=np.mean(tescores))
summary.value.add(tag='test_recloss', simple_value=tloss)
summary.value.add(tag='test_kl', simple_value=tloss2)
summary.value.add(tag='test_loss', simple_value=np.mean(losses3))
train_writer.add_summary(summary, i)
train_writer.flush()
end_time_100 = time.time()
elapsed_time = (end_time_100 - start_time_100) / 60
avg_counter += 1
avg_100_time += (1. / avg_counter) * (elapsed_time - avg_100_time)
estimated_time = (avg_100_time * ((end - i) / 100.)) / 60.
print ("\tAvg. 100 iterations time: %.2f minutes" % (avg_100_time))
print ("\tApprox. time to completion: %.2f hours" % (estimated_time))
start_time_100 = time.time()
last_100_losses = []
if i>args.min_iter_save and args.mode=='train' and tpre>min_tloss:
min_tloss=tpre
itersave = i
llprint("\nSaving Checkpoint ... "),
ncomputer.save(session, ckpts_dir, ncomputer.print_config())
llprint("Done!\n")
elif i>args.min_iter_save:
print('not save as cur loss {} < best {} at step {}'.format(tpre,min_tloss, itersave))
else:
print('not save as cur iter {} < min save inter {}'.format(i, args.min_iter_save))
except KeyboardInterrupt:
sys.exit(0)
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default="train")
parser.add_argument('--use_mem', default=True, type=str2bool)
parser.add_argument('--use_teacher', default=False, type=str2bool)
parser.add_argument('--task', default="task")
parser.add_argument('--data_dir', default="./data/cornell20_20000_10/trim_20qa_single.pkl")
parser.add_argument('--from_checkpoint', default="")
parser.add_argument('--hidden_dim', default=768, type=int)
parser.add_argument('--emb_dim', default=96, type=int)
parser.add_argument('--attend', default=0, type=int)
parser.add_argument('--mem_size', default=16, type=int)
parser.add_argument('--word_size', default=64, type=int)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--num_mog_mode', default=4, type=int)
parser.add_argument('--beam_size', default=0, type=int)
parser.add_argument('--nlayer', default=3, type=int)
parser.add_argument('--drop_out_keep', default=-1, type=float)
parser.add_argument('--learning_rate', default=1e-4, type=float)
parser.add_argument('--iterations', default=1000000, type=int)
parser.add_argument('--valid_time', default=100, type=int)
parser.add_argument('--gpu_ratio', default=0.4, type=float)
parser.add_argument('--cpu_num', default=10, type=int)
parser.add_argument('--min_iter_save', default=2000, type=int)
parser.add_argument('--gpu_device', default="1,2,3", type=str)
parser.add_argument('--use_pretrain_emb', default="word2vec", type=str)
parser.add_argument('--gt_type', default="rnn", type=str)
parser.add_argument('--single_KL', default=False, type=str2bool)
parser.add_argument('--anneal_KL', default=True, type=str2bool)
parser.add_argument('--ratio_start_anneal', default=1.0, type=float)
parser.add_argument('--valid_size', default=10000, type=int)
parser.add_argument('--test_file', default="./data/test_file.txt", type=str)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_device
print(args)
single_qa_task(args)