-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask_runtime.py
240 lines (198 loc) · 7.9 KB
/
task_runtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import traceback
from dotenv import load_dotenv
import tiktoken
from helper import pad_number, so_far_ms, time_now
from tables import (
Tasks,
create_chunk_table_class,
create_log_table_class,
create_request_table_class,
)
from logger import logger
import uuid
import requests
import json
from task_cache import TaskCache
load_dotenv()
class TaskRuntime:
def __init__(
self, task: Tasks, thread_num: int, request_index: int, cache: TaskCache
):
self.task = task
self.last_token_time = None
self.thread_num = thread_num
self.request_index = request_index
self.cache = cache
self.stream = bool(self.task.stream)
self.Chunks = create_chunk_table_class(task.id)
self.Logs = create_log_table_class(task.id)
Requests = create_request_table_class(task.id)
self.request = Requests(
id=f"{pad_number(thread_num, task.threads)}{pad_number(request_index, task.request_per_thread)}",
task_id=self.task.id,
thread_num=self.thread_num,
response="",
chunks_count=0,
success=1,
created_at=time_now(),
output_token_count=0,
request_index=self.request_index,
user_id=self.task.user_id,
)
self.log("request created")
def log(self, log_message: str, log_data: dict = None):
log_item = self.Logs(
id=f"{uuid.uuid4()}",
task_id=self.task.id,
thread_num=self.thread_num,
request_id=self.request.id,
log_message=log_message,
log_data=log_data,
created_at=time_now(),
)
self.cache.log_enqueue(log_item)
def num_tokens_from_messages(self):
tokens_per_message = 3
num_tokens = 0
for message in self.task.messages:
num_tokens += tokens_per_message
for key, value in message.items():
if value:
num_tokens += self.encode(value)
num_tokens += 3
return num_tokens
def encode(self, text):
if not text:
return 0
encoding = tiktoken.get_encoding("cl100k_base")
try:
encoding = tiktoken.encoding_for_model(self.task.model_id)
return len(encoding.encode(text))
except Exception as e:
# todo: update this
logger.error(f"Error encoding text: {e}")
encoding = tiktoken.encoding_for_model("gpt-4o-mini")
return len(encoding.encode(text))
def latency(self):
try:
task_status = self.cache.get_task(self.task.id)
if not task_status:
raise Exception("Task not found or was deleted")
if int(task_status) == 5:
raise Exception("Task was stopped")
self.request.input_token_count = self.num_tokens_from_messages()
self.request.start_req_time = time_now()
self.request_api()
self.request.end_req_time = time_now()
self.request.request_latency_ms = (
self.request.end_req_time - self.request.start_req_time
)
if self.request.first_token_latency_ms:
self.request.last_token_latency_ms = so_far_ms(self.last_token_time)
except TimeoutError as e:
self.request.success = 0
self.request.response = f"timeout: {self.task.timeout} ms"
logger.error(f"Timeout Error: {e}", exc_info=True)
except Exception as e:
self.request.success = 0
self.request.response = traceback.format_exc()
logger.error(f"Error: {e}", exc_info=True)
finally:
self.request.completed_at = time_now()
self.cache.request_enqueue(self.request)
def request_api(self):
self.log(f"client init start")
headers = {
"Content-Type": "application/json",
# sglang
"Authorization": f"Bearer {self.task.api_key}",
# aoai
"api-key": self.task.api_key or "",
}
data = {
"model": self.task.model_id,
"messages": self.task.messages_loads,
"stream": self.stream,
}
if not self.task.enable_think:
data["format"] = "json"
if self.task.model_id in ["o3-mini", "o1-mini", "o1"]:
data["max_completion_tokens"] = self.task.max_tokens
else:
data["max_tokens"] = self.task.max_tokens
data["temperature"] = self.task.temperature
self.request.data = data
response = requests.post(
url=self.task.azure_endpoint,
headers=headers,
json=data,
timeout=self.task.timeout / 1000,
stream=self.stream,
)
if response.status_code > 300:
self.request.response = response.text
self.request.success = 0
self.request.completed_at = time_now()
return
if not self.stream:
response = json.loads(response.text)
self.request.response = response["choices"][0]["message"]["content"]
self.request.first_token_latency_ms = so_far_ms(self.request.start_req_time)
self.request.request_latency_ms = so_far_ms(self.request.start_req_time)
self.request.chunks_count = 1
self.request.output_token_count = self.encode(self.request.response)
return
self.log(f"loop stream start")
for line in response.iter_lines():
if not line:
continue
decoded_line = line.decode("utf-8")
if decoded_line.startswith("data: "):
decoded_line = decoded_line[len("data: ") :]
if decoded_line.strip() == "[DONE]":
break
if decoded_line:
chunk = json.loads(decoded_line)
if len(chunk["choices"]) == 0:
continue
self.request.chunks_count += 1
if (
"delta" not in chunk["choices"][0]
or "content" not in chunk["choices"][0]["delta"]
):
continue
content = chunk["choices"][0]["delta"]["content"]
last_token_latency_ms = None
if not self.request.first_token_latency_ms:
self.request.first_token_latency_ms = so_far_ms(
self.request.start_req_time
)
last_token_latency_ms = 0
self.last_token_time = time_now()
else:
last_token_latency_ms = so_far_ms(self.last_token_time)
self.last_token_time = time_now()
token_len = 0
characters_len = 0
if content:
# logger.info(content)
self.request.response += content
token_len = self.encode(content)
characters_len = len(content)
self.request.output_token_count += token_len
Chunks = create_chunk_table_class(self.task.id)
task_chunk = Chunks(
id=f"{self.request.id}{pad_number(self.request.chunks_count, 1000000)}",
chunk_index=self.request.chunks_count,
thread_num=self.thread_num,
task_id=self.task.id,
request_id=self.request.id,
token_len=token_len,
characters_len=characters_len,
created_at=time_now(),
chunk_content=content,
last_token_latency_ms=last_token_latency_ms,
request_latency_ms=so_far_ms(self.request.start_req_time),
)
self.cache.chunk_enqueue(task_chunk)
self.log(f"loop stream end")