-
Notifications
You must be signed in to change notification settings - Fork 2
/
sequential.Rnw
152 lines (142 loc) · 4.6 KB
/
sequential.Rnw
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
<<echo=FALSE>>=
library(survival, quietly=TRUE)
opts_chunk$set(comment=NA, tidy=FALSE, highlight=FALSE, echo=FALSE,
fig.with=7, fig.height=5.5, fig.path="figures/",
out.width="\\textwidth", out.height="!", device="pdf",
cache=FALSE, background="#ffffff",
warning=FALSE, error=FALSE, prompt=TRUE)
options(contrasts= c("contr.treatment", "contr.poly"),
show.signif.starts = FALSE, continue=" ", width=60)
par(mar=c(4.1, 4.1, 1.1, 1.1))
@
\section{Sequential Events}
\begin{frame}
{\Large Sequential Events}
\end{frame}
\begin{frame}
\begin{itemize}
\item One of the first applications, widely used.
\item Data sets in the survival package (book by Therneau and Grambsch)
\begin{itemize}
\item Sequential events
\begin{itemize}
\item Recurrent bladder cancer
\item Repeated infections in children with chronic granulomatous
disease
\item rhDNase for the treatment of cystic fibrosis
\item Failure of kidney catheters
\end{itemize}
\item Parallel events
\begin{itemize}
\item Left and right eyes in diabetic retinopathy
\item Multiple liver sequelae in a UDCA trial
\end{itemize}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Parallel events}
\begin{itemize}
\item Uncommon
\item Decisions
\begin{itemize}
\item Multiple strata?
\begin{itemize}
\item Diabetes: no
\item UDCA in PBC: yes
\end{itemize}
\item strata by covariate interactions
\end{itemize}
\item Data setup: stacked
\item Analysis: robust variance
\end{itemize}
\end{frame}
\begin{frame}{Stacked data sets}
\begin{itemize}
\item Diabetic retinopathy
\begin{itemize}
\item 2n observations
\item Data set for the right eye, status of 0/1
\item Data set for the left eye
\end{itemize}
\item Parallel failures after UCDA
\begin{itemize}
\item 7 endpoints
\item 7n observations
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Diabetic retinopathy}
\begin{itemize}
\item Two eyes per subject, one randomized to laser coagulation
\end{itemize}
<<diabetic>>=
juvenile <- 1*(diabetic$age < 20)
coxph(Surv(time, status) ~ trt + juvenile + cluster(id), diabetic)
@
\end{frame}
\begin{frame}{Sequential events}
\begin{itemize}
\item Single stratum or multiple strata?
\begin{itemize}
\item Does the baseline risk reset to a new level after each event?
\item CGD data set: no
\item Repeat cardiac events: maybe
\end{itemize}
\item strata by covariate iteractions?
\item time scale: age, time since enrollment, time since last event, \ldots
\end{itemize}
\end{frame}
\begin{frame}{Models}
\begin{itemize}
\item Andersen-Gill model
\begin{itemize}
\item single stratum
\item an event is an event is an event
\end{itemize}
\item Prentice-Williams-Petersen
\begin{itemize}
\item new stratum for each event
\item time normally resets to zero
\item dangerous!
\end{itemize}
\item Wei, Lin, and Weissfeld
\begin{itemize}
\item pretend that we have parallel event data
\item never do this
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]{cgd}
<<cgd1>>=
cgd[1:13, c('id', 'treat', 'age', 'tstart', 'tstop', 'status')]
coxph(Surv(tstart, tstop, status) ~ treat + age +
steroids + cluster(id), cgd)
@
\end{frame}
\begin{frame}{Hidden covariates}
\begin{itemize}
\item Assume an important covariate $Z$ is not in the model
\item Single event model
\begin{itemize}
\item $\beta$ biased towards zero
\item amount is proportional to $se(\gamma Z)$
\end{itemize}
\item Multiple event model
\begin{itemize}
\item stratify by number of prior events, or
\item add number prior events as a covariate
\item $\beta$ is severely biased, and can actually change sign
\end{itemize}
\item A random effect per subject can help
\end{itemize}
\end{frame}
\begin{frame}{AG simplicity}
\begin{itemize}
\item For many studies, the coefficient(s) from an AG model often have
the same interpretation as an ordinary Cox model
\item higher rate $\leftrightarrow$ shorter time to next event
\item Cumulative hazard = E(number of events so far)
\item Survival curve = Pr(no events at all) is more complex,
but often not of interest
\end{itemize}
\end{frame}