-
Notifications
You must be signed in to change notification settings - Fork 2
/
bitonic.v
664 lines (612 loc) · 26.8 KB
/
bitonic.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
From mathcomp Require Import all_ssreflect perm algebra.zmodp.
From mathcomp Require Import zify.
Require Import more_tuple nsort.
Import Order POrderTheory TotalTheory.
(******************************************************************************)
(* Definition of the bitonic sorting algorithm *)
(* *)
(* l \is bitonic == a sequence is bitonic if one of its rotation is increasing*)
(* then decreasing *)
(* half_cleaner == an (m + m) connector where wire i is linked to wire i + m *)
(* rhalf_cleaner == an (m + m) connector where wire i is linked to wire 2m-i *)
(* the duplication of a half_cleaner_rec *)
(* half_cleaner_rec m *)
(* == the (`2^ m) network composed of a rhalf_cleaner and then *)
(* the duplication via recursion *)
(* rhalf_cleaner_rec m *)
(* == the (`2^ m) network composed of a rhalf_cleaner and then *)
(* the duplication of a half_cleaner_rec *)
(* bsort m == the (`2^ m) network that implements the bitonic sort *)
(* bfsort m == the (`2^ m) network that implements the bitonic sort with *)
(* flip *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section Bitonic.
Variable d : disp_t.
Variable A : orderType d.
Definition bitonic := [qualify s |
[exists r : 'I_(size (s : seq A)).+1,
exists n : 'I_(size (s : seq A)).+1,
let s1 := rot r s in sorted (<=%O) (take n s1) && sorted (>=%O) (drop n s1)]].
Lemma bitonic_sorted (s : seq A) : sorted <=%O s -> s \is bitonic.
Proof.
move=> sS; apply/existsP; exists (inord 0); rewrite !inordK //= rot0.
apply/existsP; exists (inord (size s)); rewrite !inordK //.
by rewrite take_size sS /= drop_size.
Qed.
Lemma bitonic_r_sorted (s : seq A) : sorted >=%O s -> s \is bitonic.
Proof.
move=> sS; apply/existsP; exists (inord 0); rewrite !inordK //= rot0.
by apply/existsP; exists (inord 0); rewrite !inordK // take0 drop0.
Qed.
Lemma bitonic_cat (s1 s2 : seq A) :
sorted <=%O s1 -> sorted >=%O s2 -> (s1 ++ s2) \is bitonic.
Proof.
move=> s1S s2S.
apply/existsP; exists (inord 0); rewrite inordK ?rot0 //=.
apply/existsP; rewrite size_cat /=.
have sLs : size s1 < (size s1 + size s2).+1 by rewrite ltnS leq_addr.
exists (Ordinal sLs) => /=.
rewrite take_cat ltnn subnn take0 cats0 s1S /=.
by rewrite drop_cat ltnn subnn drop0.
Qed.
Lemma bitonic_catr (s1 s2 : seq A) :
sorted >=%O s1 -> sorted <=%O s2 -> (s1 ++ s2) \is bitonic.
Proof.
move=> s1S s2S.
apply/existsP; exists (inord (size s1)); rewrite inordK; last first.
by rewrite ltnS size_cat leq_addr.
apply/existsP; rewrite size_cat /=.
have sLs : size s2 < (size s1 + size s2).+1 by rewrite ltnS leq_addl.
exists (Ordinal sLs) => /=.
rewrite rot_size_cat.
rewrite take_cat ltnn subnn take0 cats0 s2S /=.
by rewrite drop_cat ltnn subnn drop0.
Qed.
Lemma bitonic_rev (s : seq A) : (rev s \is bitonic) = (s \is bitonic).
Proof.
suff {s}Hi (s : seq A) : s \is bitonic -> rev s \is bitonic.
apply/idP/idP=> [H|]; last by apply: Hi.
by rewrite -[s]revK; apply: Hi.
move=> /existsP[/= r /existsP[n /andP[tS dS]]].
apply/existsP; rewrite size_rev.
have xO : size s - r < (size s).+1 by rewrite ltnS leq_subr.
exists (Ordinal xO) => /=.
have yO : size s - n < (size s).+1 by rewrite ltnS leq_subr.
apply/existsP; exists (Ordinal yO) => /=.
rewrite -rev_rotr take_rev drop_rev !rev_sorted size_rotr /rotr.
by rewrite !subnA ?subnn -1?ltnS // dS.
Qed.
End Bitonic.
Arguments bitonic {d A}.
Section HalfCleaner.
Variable d : disp_t.
Variable A : orderType d.
Definition clink_half_cleaner m : {ffun 'I_(m + m) -> 'I_(m + m)} :=
[ffun i =>
match split i with
| inl x => rshift _ x
| inr x => lshift _ x
end].
Lemma clink_half_cleaner_proof m :
[forall i : 'I_(m + m), clink_half_cleaner _ (clink_half_cleaner _ i) == i].
Proof.
apply/forallP => i; rewrite !ffunE; case: (splitP i) => [j iE|k iE].
by rewrite split_rshift; apply/eqP/val_eqP/eqP.
by rewrite split_lshift; apply/eqP/val_eqP/eqP.
Qed.
Definition half_cleaner b m :=
connector_of (clink_half_cleaner_proof m) (cflip_default _ b).
Lemma cfun_half_cleaner b m (t : (m + m).-tuple A) :
cfun (half_cleaner b m) t =
[tuple
match split i with
| inl x => (if b then max else min) (tnth t i) (tnth t (rshift m x))
| inr x => (if b then min else max) (tnth t i) (tnth t (lshift m x))
end | i < m + m].
Proof.
apply: eq_from_tnth => i /=.
rewrite /half_cleaner /cfun /=.
rewrite !tnth_map /= !tnth_ord_tuple !ffunE.
case: splitP => /= [j iE|k iE]; first by rewrite iE leq_addl; case: b.
rewrite ifN; first by case: b.
by rewrite -ltnNge (leq_trans (ltn_ord _) _) // iE leq_addr.
Qed.
Fixpoint half_cleaner_rec b m : network (`2^ m) :=
if m is m1.+1 then half_cleaner b (`2^ m1) :: ndup (half_cleaner_rec b m1)
else [::].
Lemma size_half_cleaner_rec b m : size (half_cleaner_rec b m) = m.
Proof.
elim: m => //= m IH.
by rewrite /ndup /= size_map size_zip IH minnn.
Qed.
End HalfCleaner.
Lemma bitonic_boolP (s : seq bool) :
reflect (exists t,
let: (b,i,j,k) := t in s = nseq i b ++ nseq j (~~ b) ++ nseq k b)
(s \is bitonic).
Proof.
apply: (iffP existsP) => /= [[x /existsP[n /andP[isort dsort]]]|
[[[[b i] j] k] ->]]; last first.
rewrite !size_cat !size_nseq.
case: b => /=.
have iL : i < (i + (j + k)).+1 by lia.
have jL : j < (i + (j + k)).+1 by lia.
exists (Ordinal iL); apply/existsP; exists (Ordinal jL) => /=.
rewrite -[X in rot X](size_nseq i true) rot_size_cat.
rewrite -catA take_cat size_nseq ltnn subnn take0 cats0.
rewrite isorted_bool_nseq /= drop_cat size_nseq ltnn subnn drop0.
by rewrite -nseqD dsorted_bool_nseq.
have iL : i < (i + (j + k)).+1 by lia.
exists (Ordinal iL); apply/existsP; exists ord0 => /=.
rewrite take0 drop0 /= -[X in rot X](size_nseq i false) rot_size_cat.
by rewrite -catA -nseqD; apply/dsorted_boolP; exists (j, k + i).
have /isorted_boolP[[j1 k1] Hirot] := isort.
have /dsorted_boolP[[j2 k2] Hdrot] := dsort.
have -> : s = rotr x (nseq j1 false ++ nseq (k1 + j2) true ++ nseq k2 false).
apply: (@rot_inj x); rewrite rotrK.
by rewrite -[LHS](cat_take_drop n) Hirot Hdrot nseqD !catA.
rewrite /rotr !size_cat !size_nseq.
set i1 := j1 + (k1 + j2 + k2) - x.
have [i1Lj1|j1Li1] := leqP i1 j1.
rewrite -(subnK i1Lj1) addnC nseqD -catA.
rewrite -{1}[i1](size_nseq i1 false) rot_size_cat.
by exists (false, j1 - i1, k1 + j2, k2 + i1); rewrite !nseqD !catA.
have [i1j1Lk1j2|k1j2Li1j1] := leqP (i1 - j1) (k1 + j2).
rewrite -(subnK i1j1Lk1j2) addnC !nseqD -!catA catA.
have {1}-> : i1 = size (nseq j1 false ++ nseq (i1 - j1) true).
by rewrite size_cat !size_nseq addnC subnK // ltnW.
rewrite rot_size_cat.
by exists (true, k1 + j2 - (i1 - j1), k2 + j1, i1 - j1); rewrite nseqD !catA.
have [i1j1k1j2Lk2|k2Li1j1k1j2] := leqP (i1 - j1 - (k1 + j2)) k2.
rewrite -(subnK i1j1k1j2Lk2) [k2 - _ + _]addnC !nseqD -nseqD.
have {1}-> : i1 = size (nseq j1 false ++ nseq (j2 + k1) true ++
nseq (i1 - j1 - (j2 + k1)) false).
rewrite !size_cat !size_nseq [j2 + k1 + _]addnC subnK 1?ltnW //.
by rewrite [j1 + _]addnC subnK // ltnW.
by rewrite addnC.
rewrite [k1 + _]addnC !catA -catA rot_size_cat.
exists (false, k2 - (i1 - j1 - (j2 + k1)) + j1,
j2 + k1, (i1 - j1 - (j2 + k1))).
by rewrite !nseqD !catA.
rewrite rot_oversize.
by exists (false, j1, k1 + j2, k2); rewrite !catA.
rewrite !size_cat !size_nseq.
rewrite -leq_subRL; last by apply: ltnW.
by rewrite -leq_subRL ltnW.
Qed.
Lemma bitonic_half_cleaner fb m (t : (m + m).-tuple bool) :
(t : seq _) \is bitonic ->
let t1 := cfun (half_cleaner fb m) t in
(ttake t1 == nseq m fb :> seq _) &&
((tdrop t1 : seq _) \is bitonic)
||
(tdrop t1 == nseq m (~~fb) :> seq _) &&
((ttake t1 : seq _) \is bitonic).
Proof.
move=> /bitonic_boolP[[[[b i] j] k] tE] /=; set t1 := cfun _ _.
have mmE : m + m = i + j + k.
by rewrite -(size_tuple t) tE !size_cat !size_nseq addnA.
have [iLm|mLi]:= leqP i m; last first.
(***
b b b b b b b
b b~b~b b b b
min b b 0 0 b b b
max b b 1 1 b b b
***)
pose smin := nseq (i - m) b ++ nseq j false ++ nseq k b.
pose smax := nseq (i - m) b ++ nseq j true ++ nseq k b.
have mE : m = i - m + j + k.
by rewrite -addnA addnBAC 1?ltnW // addnA -mmE addnK.
have ttE : ttake t1 = (if fb then smax else smin) :> seq bool.
apply: (@eq_from_nth _ false) => [|u].
by case: (fb); rewrite size_tuple !size_cat !size_nseq addnA.
rewrite size_tuple => uLm.
rewrite /ttake val_tcast nth_take // /t1 cfun_half_cleaner /=.
have uLi : u < i by apply: ltn_trans mLi.
have uLmm : u < m + m by apply: leq_trans uLm (leq_addl _ _).
rewrite (nth_map (Ordinal uLmm)) -1?enum_ord ?size_enum_ord //.
have {2}->: u = (Ordinal uLmm) :> nat by [].
rewrite nth_ord_enum /=; case: splitP => /= u1 uE; last by lia.
rewrite !(tnth_nth false) /= tE !nth_cat !size_nseq !nth_nseq -uE.
by case: (fb); rewrite !nth_cat !size_nseq !nth_nseq;
repeat (case: leqP => ?; try lia); case: (b).
have tdE : tdrop t1 = (if fb then smin else smax) :> seq bool.
apply: (@eq_from_nth _ false) => [|u].
by rewrite fun_if size_tuple !size_cat !size_nseq addnA if_same.
rewrite size_tuple => uLn.
rewrite /tdrop val_tcast nth_drop // /t1 cfun_half_cleaner /=.
have uLi : u < i by apply: ltn_trans mLi.
have muLmm : m + u < m + m by rewrite ltn_add2l.
rewrite (nth_map (Ordinal muLmm)) -1?enum_ord ?size_enum_ord //.
have {2}->: m + u = (Ordinal muLmm) :> nat by [].
rewrite nth_ord_enum /=; case: splitP => /= u1 uE.
by have := ltn_ord u1; lia.
have {}uE : u = u1 by rewrite -[u](addnK m) addnC uE addnC addnK.
rewrite !(tnth_nth false) /= tE !nth_cat !size_nseq !nth_nseq -uE.
by case: (fb); rewrite !nth_cat !size_nseq !nth_nseq;
repeat (case: leqP => ?; try lia); case: (b).
rewrite {}/smin {}/smax in ttE tdE.
case: (fb) tE ttE tdE; case: (b); rewrite -!nseqD => /= tE ttE tdE.
- apply/orP; left.
rewrite ttE addnBAC 1?ltnW // addnA -mmE addnK eqxx /=.
by apply/bitonic_boolP; exists (true, i - m, j, k).
- apply/orP; right.
rewrite tdE addnBAC 1?ltnW // addnA -mmE addnK eqxx /=.
by apply/bitonic_boolP; exists (false, i - m, j, k).
- apply/orP; right.
rewrite tdE addnBAC 1?ltnW // addnA -mmE addnK eqxx /=.
by apply/bitonic_boolP; exists (true, i - m, j, k).
apply/orP; left.
rewrite ttE addnBAC 1?ltnW // addnA -mmE addnK eqxx /=.
by apply/bitonic_boolP; exists (false, i - m, j, k).
have [ijLm|mLij]:= leqP (i + j) m.
(*** 0 -> (i + j - m) -> (i - (i + j - m)) - j -> m - i
b b b~b~b~b b
b b b b b b b
min b b b 0 0 0 b
max b b b 1 1 1 b
***)
have mE : m = i + j + k - m by rewrite -mmE addnK.
pose smin := nseq i b ++ nseq j false ++ nseq (m - (i + j)) b.
pose smax := nseq i b ++ nseq j true ++ nseq (m - (i + j)) b.
have ttE : ttake t1 = (if fb then smax else smin) :> seq bool.
apply: (@eq_from_nth _ false) => [|u].
by case: (fb); rewrite size_tuple !size_cat !size_nseq; lia.
rewrite size_tuple => uLm.
rewrite /ttake val_tcast nth_take // /t1 cfun_half_cleaner /=.
have uLmm : u < m + m by apply: leq_trans uLm (leq_addl _ _).
rewrite (nth_map (Ordinal uLmm)) -1?enum_ord ?size_enum_ord //.
have {2}->: u = (Ordinal uLmm) :> nat by [].
rewrite nth_ord_enum /=; case: splitP => /= u1 uE; last by lia.
rewrite !(tnth_nth false) /= tE !nth_cat !size_nseq !nth_nseq -uE.
by case: (fb); rewrite !nth_cat !size_nseq !nth_nseq;
repeat (case: leqP => ?; try lia); case: (b).
have tdE : tdrop t1 = (if fb then smin else smax) :> seq bool.
apply: (@eq_from_nth _ false) => [|u].
by case: (fb); rewrite size_tuple !size_cat !size_nseq; lia.
rewrite size_tuple => uLn.
rewrite /tdrop val_tcast nth_drop // /t1 cfun_half_cleaner /=.
have uLmm : u < m + m by apply: leq_trans uLn (leq_addl _ _).
have muLmm : m + u < m + m by rewrite ltn_add2l.
rewrite (nth_map (Ordinal muLmm)) -1?enum_ord ?size_enum_ord //.
have {2}->: m + u = (Ordinal muLmm) :> nat by [].
rewrite nth_ord_enum /=; case: splitP => /= u1 uE.
by move: (ltn_ord u1); lia.
have {}uE : u = u1 by rewrite -[u](addnK m) addnC uE addnC addnK.
rewrite !(tnth_nth false) /= tE !nth_cat !size_nseq !nth_nseq -uE.
by case: (fb); rewrite !nth_cat !size_nseq !nth_nseq;
repeat (case: leqP => ?; try lia); case: (b).
rewrite {}/smin {}/smax in ttE tdE.
case: (fb) tE ttE tdE; case: (b); rewrite -!nseqD => /= tE ttE tdE.
- apply/orP; left.
rewrite ttE addnA addnC subnK // eqxx /=.
by apply/bitonic_boolP; exists (true, i, j, m - (i + j)).
- apply/orP; right.
rewrite tdE addnA addnC subnK // eqxx /=.
by apply/bitonic_boolP; exists (false, i, j, m - (i + j)).
- apply/orP; right.
rewrite tdE addnA addnC subnK // eqxx /=.
by apply/bitonic_boolP; exists (true, i, j, m - (i + j)).
apply/orP; left.
rewrite ttE addnA addnC subnK // eqxx /=.
by apply/bitonic_boolP; exists (false, i, j, m - (i + j)).
have mE : m = i + j + k - m by rewrite -mmE addnK.
have [jLm|mLj]:= leqP j m.
(***
b b b b b~b~b
~b~b b b b b b
min 0 0 b b b 0 0
max 1 1 b b b 1 1
***)
pose smin := nseq (i + j - m) false ++ nseq (m - j) b ++ nseq (m - i) false.
pose smax := nseq (i + j - m) true ++ nseq (m - j) b ++ nseq (m - i) true.
have ttE : ttake t1 = (if fb then smax else smin) :> seq bool.
apply: (@eq_from_nth _ false) => [|u].
by case: (fb); rewrite size_tuple !size_cat !size_nseq; lia.
rewrite size_tuple => uLm.
rewrite /ttake val_tcast nth_take // /t1 cfun_half_cleaner /=.
have uLmm : u < m + m by lia.
rewrite (nth_map (Ordinal uLmm)) -1?enum_ord ?size_enum_ord //.
have {2}->: u = (Ordinal uLmm) :> nat by [].
rewrite nth_ord_enum /=; case: splitP => /= u1 uE; last by lia.
rewrite !(tnth_nth false) /= tE !nth_cat !size_nseq !nth_nseq -uE.
by case: (fb); rewrite !nth_cat !size_nseq !nth_nseq;
repeat (case: leqP => ?; try lia); case: (b).
have tdE : tdrop t1 = (if fb then smin else smax) :> seq bool.
apply: (@eq_from_nth _ false) => [|u].
by case: (fb); rewrite size_tuple !size_cat !size_nseq; lia.
rewrite size_tuple => uLm.
rewrite /tdrop val_tcast nth_drop // /t1 cfun_half_cleaner /=.
have uLmm : u < m + m by apply: leq_trans uLm (leq_addl _ _).
have muLmm : m + u < m + m by rewrite ltn_add2l.
rewrite (nth_map (Ordinal muLmm)) -1?enum_ord ?size_enum_ord //.
have {2}->: m + u = (Ordinal muLmm) :> nat by [].
rewrite nth_ord_enum /=; case: splitP => /= u1 uE.
by move: (ltn_ord u1); lia.
have {}uE : u = u1 by rewrite -[u](addnK m) addnC uE addnC addnK.
rewrite !(tnth_nth false) /= tE !nth_cat !size_nseq !nth_nseq -uE.
by case: (fb); rewrite !nth_cat !size_nseq !nth_nseq;
repeat (case: leqP => ?; try lia); case: (b).
rewrite {}/smin {}/smax in ttE tdE.
case: (fb) tE ttE tdE; case: (b); rewrite -!nseqD => /= tE ttE tdE.
- apply/orP; left.
rewrite ttE; apply/andP; split; first by apply/eqP; congr nseq; lia.
by apply/bitonic_boolP; exists (false, i + j - m, m - j, m - i).
- apply/orP; right.
rewrite tdE; apply/andP; split; first by apply/eqP; congr nseq; lia.
by apply/bitonic_boolP; exists (true, i + j - m, m - j, m - i).
- apply/orP; right.
rewrite tdE; apply/andP; split; first by apply/eqP; congr nseq; lia.
by apply/bitonic_boolP; exists (false, i + j - m, m - j, m - i).
apply/orP; left.
rewrite ttE; apply/andP; split; first by apply/eqP; congr nseq; lia.
by apply/bitonic_boolP; exists (true, i + j - m, m - j, m - i).
(***
b b~b~b~b~b~b
~b~b~b~b~b b b
min 0 0~b~b~b 0 0
max 1 1~b~b~b 1 1
***)
pose smin := nseq i false ++ nseq (j - m) (~~b) ++ nseq k false.
pose smax := nseq i true ++ nseq (j - m) (~~ b) ++ nseq k true.
have ttE : ttake t1 = (if fb then smax else smin) :> seq bool.
apply: (@eq_from_nth _ false) => [|u].
by case: (fb); rewrite size_tuple !size_cat !size_nseq; lia.
rewrite size_tuple => uLm.
rewrite /ttake val_tcast nth_take // /t1 cfun_half_cleaner /=.
have uLmm : u < m + m by lia.
rewrite (nth_map (Ordinal uLmm)) -1?enum_ord ?size_enum_ord //.
have {2}->: u = (Ordinal uLmm) :> nat by [].
rewrite nth_ord_enum /=; case: splitP => /= u1 uE; last by lia.
rewrite !(tnth_nth false) /= tE !nth_cat !size_nseq !nth_nseq -uE.
by case: (fb); rewrite !nth_cat !size_nseq !nth_nseq;
repeat (case: leqP => ?; try lia); case: (b).
have tdE : tdrop t1 = (if fb then smin else smax) :> seq bool.
apply: (@eq_from_nth _ false) => [|u].
by case: (fb); rewrite size_tuple !size_cat !size_nseq; lia.
rewrite size_tuple => uLm.
rewrite /tdrop val_tcast nth_drop // /t1 cfun_half_cleaner /=.
have uLmm : u < m + m by apply: leq_trans uLm (leq_addl _ _).
have muLmm : m + u < m + m by rewrite ltn_add2l.
rewrite (nth_map (Ordinal muLmm)) -1?enum_ord ?size_enum_ord //.
have {2}->: m + u = (Ordinal muLmm) :> nat by [].
rewrite nth_ord_enum /=; case: splitP => /= u1 uE.
by move: (ltn_ord u1); lia.
have {}uE : u = u1 by rewrite -[u](addnK m) addnC uE addnC addnK.
rewrite !(tnth_nth false) /= tE !nth_cat !size_nseq !nth_nseq -uE.
by case: (fb); rewrite !nth_cat !size_nseq !nth_nseq;
repeat (case: leqP => ?; try lia); case: (b).
rewrite {}/smin {}/smax in ttE tdE.
case: (fb) tE ttE tdE; case: (b); rewrite -!nseqD => /= tE ttE tdE.
- apply/orP; right.
rewrite tdE; apply/andP; split; first by apply/eqP; congr nseq; lia.
by apply/bitonic_boolP; exists (true, i, j - m, k).
- apply/orP; left.
rewrite ttE; apply/andP; split; first by apply/eqP; congr nseq; lia.
by apply/bitonic_boolP; exists (false, i, j - m, k).
- apply/orP; left.
rewrite ttE; apply/andP; split; first by apply/eqP; congr nseq; lia.
by apply/bitonic_boolP; exists (true, i, j - m, k).
apply/orP; right.
rewrite tdE; apply/andP; split; first by apply/eqP; congr nseq; lia.
by apply/bitonic_boolP; exists (false, i, j - m, k).
Qed.
Lemma sorted_half_cleaner_rec b m (t : (`2^ m).-tuple bool) :
(t : seq _) \is bitonic ->
sorted (if b then (>=%O : rel _) else <=%O) (nfun (half_cleaner_rec b m) t).
Proof.
elim: m t b => /= [|m IH t b tB]; first by (do 2 case => //=) => x [].
rewrite nfun_dup.
have /orP[/andP[Ht Hd]|/andP[Ht Hd]] := bitonic_half_cleaner b tB.
have -> : ttake (cfun (half_cleaner b (`2^ m)) t) =
[tuple of nseq (`2^ m) b].
by apply/val_eqP.
rewrite nfun_const.
case: b Ht Hd => Ht Hd; last by rewrite sorted_bool_constl ; apply: IH.
rewrite -rev_sorted rev_cat /= rev_nseq sorted_bool_constr rev_sorted /=.
by apply: IH.
have -> : tdrop (cfun (half_cleaner b (`2^ m)) t) =
[tuple of nseq (`2^ m) (~~b)].
by apply/val_eqP.
rewrite nfun_const.
case: b Ht Hd => Ht Hd; last by rewrite sorted_bool_constr; apply: IH.
rewrite -rev_sorted rev_cat /= rev_nseq sorted_bool_constl rev_sorted /=.
by apply: IH.
Qed.
Section RHalfCleaner.
Variable d : disp_t.
Variable A : orderType d.
Definition clink_rhalf_cleaner m : {ffun 'I_m -> 'I_m} := [ffun i => rev_ord i].
Lemma clink_rhalf_cleaner_proof m :
[forall i : 'I_(m + m), clink_rhalf_cleaner _ (clink_rhalf_cleaner _ i) == i].
Proof. by apply/forallP => i; rewrite !ffunE rev_ordK. Qed.
Definition rhalf_cleaner m :=
connector_of (clink_rhalf_cleaner_proof m) (cflip_default _ false).
Lemma cfun_rhalf_cleaner m (t : (m + m).-tuple A) :
cfun (rhalf_cleaner m) t =
[tuple
match split i with
| inl x => min (tnth t i) (tnth t (rshift m (rev_ord x)))
| inr x => max (tnth t (lshift m (rev_ord x))) (tnth t i)
end | i < m + m].
Proof.
apply: eq_from_tnth => i /=.
rewrite /rhalf_cleaner /cfun /= !tnth_map /= tnth_ord_tuple !ffunE.
case: splitP => [j iE|k iE]; rewrite /= iE.
rewrite leq_subRL ?(leq_trans (ltn_ord _)) ?leq_addr //.
rewrite leq_add // 1?ltnW //.
by congr (min _ (tnth _ _)); apply/val_eqP; rewrite /= iE addnBA.
rewrite -addnS subnDl leqNgt ltn_subLR // addSn ltnS addnC -addnA leq_addr /=.
rewrite maxC; congr (max (tnth _ _) _).
by apply/val_eqP; rewrite /= iE -addnS subnDl.
Qed.
Lemma cfun_rhalf_cleaner_rev_take m (t : (m + m).-tuple A) :
ttake (cfun (rhalf_cleaner m) t) =
ttake (cfun (half_cleaner false m) [tuple of ttake t ++ rev (tdrop t)]).
Proof.
rewrite cfun_rhalf_cleaner cfun_half_cleaner.
apply: eq_from_tnth => i /=.
have st : size (ttake t) = m.
rewrite ttakeE size_take size_tuple.
by case: (m) => // n1; rewrite addSn ltnS addnS ltnS leq_addr.
have sd : size (tdrop t) = m.
by rewrite tdropE size_drop size_tuple addnK.
pose k : 'I_(m + m) := lshift _ i; pose a := tnth t k.
rewrite !(tnth_nth a) !ttakeE !nth_take //=.
rewrite !(nth_map k) //; last first.
- by rewrite fintype.size_enum_ord (leq_trans (ltn_ord _) (leq_addr _ _)).
- by rewrite fintype.size_enum_ord (leq_trans (ltn_ord _) (leq_addr _ _)).
- by rewrite -fintype.enumT fintype.size_enum_ord (leq_trans (ltn_ord _)
(leq_addr _ _)).
have -> : i = k :> nat by [].
rewrite -fintype.enumT fintype.nth_ord_enum.
case: splitP => [j kE|j kE]; last first.
by have := ltn_ord i; rewrite [i : nat]kE ltnNge leq_addr.
congr min.
by rewrite !(tnth_nth a) nth_cat /= st ltn_ord ttakeE nth_take.
rewrite !(tnth_nth a) nth_cat /= st ifN; last by rewrite -leqNgt leq_addr.
rewrite nth_rev; last by rewrite sd addnC addnK.
rewrite sd tdropE nth_drop //.
by congr nth; lia.
Qed.
Lemma cfun_rhalf_cleaner_rev_drop m (t : (m + m).-tuple A) :
tdrop (cfun (rhalf_cleaner m) t) =
trev
(tdrop (cfun (half_cleaner false m) [tuple of ttake t ++ rev (tdrop t)])).
Proof.
rewrite cfun_rhalf_cleaner cfun_half_cleaner.
apply: eq_from_tnth => i /=.
have st : size (ttake t) = m.
rewrite ttakeE size_take size_tuple.
by case: (m) => // n1; rewrite addSn ltnS addnS ltnS leq_addr.
have sd : size (tdrop t) = m.
by rewrite tdropE size_drop size_tuple addnK.
pose k : 'I_(m + m) := rshift _ i; pose a := tnth t k.
rewrite !(tnth_nth a) nth_rev; last first.
by rewrite tdropE size_drop size_tuple addnK.
rewrite !tdropE !nth_drop !(nth_map k) //; last first.
- by rewrite size_tuple ltn_add2l.
- by rewrite -fintype.enumT fintype.size_enum_ord ltn_add2l.
- by rewrite size_drop !size_tuple; have := ltn_ord i; lia.
- rewrite size_drop !size_tuple -fintype.enumT fintype.size_enum_ord.
by have := ltn_ord i; lia.
have -> : m + i = k :> nat by [].
rewrite -fintype.enumT fintype.nth_ord_enum.
case: splitP => [j kE|j kE].
by have := ltn_ord j; rewrite -kE /= ltnNge leq_addr.
rewrite size_drop size_tuple addnK.
have -> : m + (m - i.+1) = rshift m (rev_ord i) by [].
rewrite fintype.nth_ord_enum.
case: splitP => /= [l lE | l lE]; first by have := ltn_ord l; lia.
rewrite maxC.
congr max.
rewrite !(tnth_nth a) nth_cat /= st lE ltnNge leq_addr /=.
rewrite nth_rev; last by rewrite sd; have := ltn_ord i; lia.
rewrite tdropE nth_drop // size_drop size_tuple addnK.
congr nth.
have : m + i = m + j by rewrite -kE.
by have := ltn_ord i; lia.
rewrite !(tnth_nth a) nth_cat /= st ltn_ord.
rewrite ttakeE nth_take //; congr nth.
have : m + i = m + j by rewrite -kE.
by have := ltn_ord i; lia.
Qed.
Lemma cfun_rhalf_cleaner_rev n (t : (n + n).-tuple A) :
let t1 := cfun (half_cleaner false n) [tuple of ttake t ++ rev (tdrop t)] in
cfun (rhalf_cleaner n) t =
[tuple of ttake t1 ++ rev (tdrop t1)].
Proof.
rewrite /= [LHS]cat_ttake_tdrop; congr [tuple of _ ++ _].
by apply: cfun_rhalf_cleaner_rev_take.
by apply: cfun_rhalf_cleaner_rev_drop.
Qed.
Definition rhalf_cleaner_rec n : network (`2^ n) :=
if n is n1.+1 then
rhalf_cleaner (`2^ n1) :: ndup (half_cleaner_rec false n1)
else [::].
Lemma size_rhalf_cleaner_rec n : size (rhalf_cleaner_rec n) = n.
Proof.
case: n => //= n.
by rewrite /ndup /= size_map size_zip size_half_cleaner_rec minnn.
Qed.
End RHalfCleaner.
Lemma sorted_rhalf_cleaner_rec m (t : (`2^ m.+1).-tuple bool) :
sorted <=%O (ttake t : seq _) -> sorted <=%O (tdrop t : seq _) ->
sorted <=%O (nfun (rhalf_cleaner_rec m.+1) t).
Proof.
rewrite /rhalf_cleaner_rec /= => Hst Hsd.
rewrite nfun_dup.
rewrite cfun_rhalf_cleaner_rev_drop -/e2n cfun_rhalf_cleaner_rev_take -/e2n.
set u : (`2^ m.+1).-tuple _ := [tuple of _ ++ rev _].
have uB : (u : seq _) \is bitonic.
apply: bitonic_cat => //.
by rewrite rev_sorted.
have := bitonic_half_cleaner false uB;
rewrite -/e2n => /orP[/andP[Ht Hd]|/andP[Ht Hd]].
have -> : ttake (cfun (half_cleaner false (`2^ m)) u) =
[tuple of nseq (`2^ m) false].
by apply/val_eqP.
rewrite nfun_const sorted_bool_constl.
apply: sorted_half_cleaner_rec.
by rewrite bitonic_rev.
have -> : trev (tdrop (cfun (half_cleaner false (`2^ m)) u)) =
[tuple of nseq (`2^ m) true].
by apply/val_eqP; rewrite /= (eqP Ht) rev_nseq.
rewrite nfun_const sorted_bool_constr.
by apply: sorted_half_cleaner_rec.
Qed.
Section BitonicSort.
Variable d : disp_t.
Variable A : orderType d.
Fixpoint bsort m : network (`2^ m) :=
if m is m1.+1 then ndup (bsort m1) ++ rhalf_cleaner_rec m1.+1
else [::].
Lemma size_bsort m : size (bsort m) = (m * m.+1)./2.
Proof.
elim: m => [|m IH] //.
rewrite /ndup [LHS]/= size_cat [LHS]/= size_map size_zip.
rewrite minnn size_map size_zip size_half_cleaner_rec minnn IH.
by rewrite -addn2 mulnDr -!divn2 divnDMl // mulnC.
Qed.
Lemma sorting_bsort m : bsort m \is sorting.
Proof.
elim: m => [|m IH]; first by apply: sorting1.
apply/forallP => t.
rewrite /bsort -/bsort nfun_cat.
apply: sorted_rhalf_cleaner_rec; first by rewrite nfun_dup ttakeK (forallP IH).
by rewrite nfun_dup tdropK (forallP IH).
Qed.
End BitonicSort.
Section BitonicSort.
Variable d : disp_t.
Variable A : orderType d.
Fixpoint bfsort (b : bool) m : network (`2^ m) :=
if m is m1.+1 then nmerge (bfsort b m1) (bfsort (~~b) m1) ++
half_cleaner_rec b m1.+1
else [::].
Lemma size_bfsort b m : size (bfsort b m) = (m * m.+1)./2.
Proof.
elim: m b => [b|m IH b] //.
rewrite [LHS]/= size_cat [LHS]/= size_map size_zip.
rewrite !IH minnn size_map size_zip size_half_cleaner_rec minnn.
by rewrite -addn2 mulnDr -!divn2 divnDMl // mulnC.
Qed.
Lemma sorting_bfsort m : bfsort false m \is sorting.
Proof.
rewrite /sorting.
rewrite -[<=%O]/(if false then (>=%O : rel _) else <=%O).
elim: m false => [b|m IH b]; first by apply/forallP => /= [] [[|x[]]].
apply/forallP => t.
rewrite /bfsort -/bfsort nfun_cat.
apply: sorted_half_cleaner_rec.
rewrite nfun_merge ?size_bfsort //.
case: b; last first.
apply: bitonic_cat; first by have /forallP := IH false; apply.
by have /forallP := IH true; apply.
apply: bitonic_catr; first by have /forallP := IH true; apply.
by have /forallP := IH false; apply.
Qed.
End BitonicSort.