-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn.py
201 lines (160 loc) · 7.41 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python3
"""
Authors: Hung NGUYEN.
Date: March 2018
Simple algorithm to classify all the classes of Fashion Mnist dataset.
The accuracy of this model is ~90%.
"""
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import FashionMNIST, MNIST
from torch.autograd import Variable
import torch.nn.functional as F
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
#########################################################################
# Handle the args to this script
#########################################################################
parser = argparse.ArgumentParser()
parser.add_argument("mode",choices=['train', 'test', 'demo'], help="Different mode of script: train|test|demo")
parser.add_argument("-bs","--batch_size", type = int, default = 128, help="Batch size will used in training phase.")
parser.add_argument("-nbw", "--number_worker", type = int, default = 4, help ="number of worker used on prepare data.")
parser.add_argument("-ep","--epoches", type = int, default=20, help="number of epoches to run.")
parser.add_argument("-mn","--model_name", default='S4L_CNN', help="name of model without extension, the extension is added automatically.")
parser.add_argument("-lr","--learning_rate", type = float, default= 0.01, help="learning rate of training.")
args = parser.parse_args()
#########################################################################
# Prepare for data
#########################################################################
transform = transforms.Compose([transforms.ToTensor(),]) # transforms.Normalize((0.1307,), (0.3081,))])
#########################################################################
# CNN
#########################################################################
class SimpleCNN(nn.Module):
"""
Simple architecture of CNN
"""
def __init__(self, nb_channel_in=1, nb_channel_hid=32,nb_channel_hid_2=64, kernel_size=3):
"""
Args:
nb_channel_in : depth (or number of channels) of input image
nb_channel_hid : depth of hidden layers
nb_channel_hid_2 : depth of hidden layers number 2
kernel_size : same size of kernel apply for both layers.
"""
super().__init__()
self.conv1 = nn.Conv2d(nb_channel_in,nb_channel_hid,kernel_size)
self.bn_1 = nn.BatchNorm2d(nb_channel_hid)
self.max_pool_1 = nn.MaxPool2d(2)
self.max_pool_2 = nn.MaxPool2d(2)
self.drop_out_1 = nn.Dropout(p=0.25)
self.conv2 = nn.Conv2d(nb_channel_hid,64,3)
self.bn_2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(nb_channel_hid_2,128,kernel_size)
self.bn_3 = nn.BatchNorm2d(128)
self.drop_out_2 = nn.Dropout(p=0.4)
sz_at_fc = 3
nb_classes = 10
self.fc1 = nn.Linear(sz_at_fc*sz_at_fc * 128, 128)
self.drop_out_3 = nn.Dropout(0.3)
self.fc2 = nn.Linear(128,nb_classes)
self.sm = nn.Softmax(dim = 1)
def forward(self,x):
"""
Args:
x: batch of image size of (num_images = 64,c = 1, h = 28, w = 28)
"""
hl1 = F.relu(self.bn_1(self.conv1(x)))
hl1 = self.max_pool_1(hl1)
hl1 = self.drop_out_1(hl1)
hl2 = F.relu(self.bn_2(self.conv2(hl1)))
hl2 = self.max_pool_2(hl2)
hl2 = self.drop_out_1(hl2)
hl3 = F.relu(self.bn_3(self.conv3(hl2)))
hl3 = self.drop_out_2(hl3)
# Flat the each of sample inside batch.
hl3 = hl3.view(hl3.size()[0], -1)
hl4 = self.fc1(hl3)
hl4 = self.drop_out_3(hl4)
hl5 = self.fc2(hl4)
return self.sm(hl5)
#########################################################################
# Name of model file
#########################################################################
model_name = args.model_name + '.pt'
#########################################################################
# Training
#########################################################################
if args.mode=='train':
#load dataset to loader
dataset = FashionMNIST("./data", train=True, download = True, transform=transform)
data_loader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.number_worker)
print(len(dataset))
net = SimpleCNN().cuda()
# number of epochs
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.xavier_uniform(m.weight)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
# initialize the weights in CNN.
net.apply(weights_init)
criterion = nn.CrossEntropyLoss()
print("Learning rate:", args.learning_rate)
# Trying with different optimizer.
#opt = optim.SGD(net.parameters(), lr=args.learning_rate, momentum = 0.9)
opt = optim.Adam(net.parameters(), lr=args.learning_rate)
# store losses so we could draw it later
all_losses = []
for ep in range(args.epoches):
current_loss = 0.0
for i, data in enumerate(data_loader, 0):
inputs, labels = data
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
opt.zero_grad()
output = net(inputs)
loss = criterion(output, labels)
loss.backward()
opt.step()
current_loss += loss.data[0]
if i % 10 == 0:
current_loss /= 10.0
all_losses.append(current_loss)
print("Info: ", str(ep), str(i), str(current_loss))
current_loss = 0.0
##########################################################################
# training now finish, save the model and draw losses
##########################################################################
torch.save(net,model_name)
plt.plot(all_losses)
plt.savefig('loss.png')
#############################################################################
# Test mode
############################################################################
if args.mode=='test':
net = torch.load(model_name)
dataset = FashionMNIST("./data", train=False, download = True, transform=transform)
test_loader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size, shuffle=True, num_workers=args.number_worker)
print(len(dataset))
net.eval()
test_loss = 0
correct = 0
loss_func = nn.CrossEntropyLoss(size_average = False)
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = net(data)
test_loss += loss_func(output, target).data[0] # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).long().cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))