-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmode_sphere_epoch.py
68 lines (52 loc) · 2.23 KB
/
mode_sphere_epoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python
# Created by "Thieu" at 16:33, 16/06/2022 ----------%
# Email: nguyenthieu2102@gmail.com %
# Github: https://github.com/thieu1995 %
# --------------------------------------------------%
from pandas import DataFrame
from mealpy.swarm_based import WOA
from pathlib import Path
import time
import numpy as np
np.random.seed(12345)
def fitness_func(solution):
return np.sum(solution**2)
if __name__ == "__main__":
model_name = "WOA"
N_TRIALS = 10
problem = {
"fit_func": fitness_func,
"lb": [-100, ] * 50,
"ub": [100, ] * 50,
"minmax": "min",
"log_to": None,
}
epoch = 500
pop_size = 50
mode_names = ["single", "swarm", "thread", "process"]
PATH_ERROR = f"history/error/{model_name}/"
PATH_BEST_FIT = "history/best_fit/"
Path(PATH_ERROR).mkdir(parents=True, exist_ok=True)
Path(PATH_BEST_FIT).mkdir(parents=True, exist_ok=True)
## Run model
best_fit_full = {}
list_total_time = []
for mode_name in mode_names:
error_full = {}
best_fit_list = []
for id_trial in range(1, N_TRIALS + 1):
time_start = time.perf_counter()
model = WOA.OriginalWOA(epoch, pop_size)
_, best_fitness = model.solve(problem, mode=mode_name)
time_end = time.perf_counter() - time_start
temp = f"trial_{id_trial}"
error_full[temp] = model.history.list_global_best_fit
best_fit_list.append(best_fitness)
list_total_time.append([mode_name, id_trial, time_end])
df = DataFrame(error_full)
df.to_csv(f"{PATH_ERROR}{model_name}_{mode_name}_sphere_error.csv", header=True, index=False)
best_fit_full[mode_name] = best_fit_list
df = DataFrame(best_fit_full)
df.to_csv(f"{PATH_BEST_FIT}/{model_name}_sphere_best_fit.csv", header=True, index=False)
df_time = DataFrame(np.array(list_total_time), columns=["mode", "trial", "total_time"])
df_time.to_csv(f"{PATH_BEST_FIT}/{model_name}_sphere_total_time.csv", header=True, index=False)