-
Notifications
You must be signed in to change notification settings - Fork 8
/
ransac_ellipse.cpp
449 lines (404 loc) · 13.4 KB
/
ransac_ellipse.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/*
*
* cvEyeTracker is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* cvEyeTracker is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with cvEyeTracker; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* cvEyeTracker - Version 1.2.5
* Part of the openEyes ToolKit -- http://hcvl.hci.iastate.edu/openEyes
* Release Date:
* Authors : Dongheng Li <dhli@iastate.edu>
* Derrick Parkhurst <derrick.parkhurst@hcvl.hci.iastate.edu>
* Jason Babcock <babcock@nyu.edu>
* David Winfield <dwinfiel@iastate.edu>
* Copyright (c) 2004-2006
* All Rights Reserved.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "ransac_ellipse.h"
#include "svd.h"
stuDPoint start_point = {-1, -1};
int inliers_num;
int angle_step = 20; //20 degrees
int pupil_edge_thres = 20;
double pupil_param[5] = {0, 0, 0, 0, 0};
vector <stuDPoint*> edge_point;
vector <int> edge_intensity_diff;
//------------ Starburst pupil edge detection -----------//
// Input
// pupile_image: input image
// width, height: size of the input image
// cx,cy: central start point of the feature detection process
// pupil_edge_threshold: best guess for the pupil contour threshold
// N: number of rays
// minimum_candidate_features: must return this many features or error
void starburst_pupil_contour_detection(UINT8* pupil_image, int width, int height, int edge_thresh, int N, int minimum_cadidate_features)
{
int dis = 7;
double angle_spread = 100*PI/180;
int loop_count = 0;
double angle_step = 2*PI/N;
double new_angle_step;
stuDPoint *edge, edge_mean;
double angle_normal;
double cx = start_point.x;
double cy = start_point.y;
int first_ep_num;
while (edge_thresh > 5 && loop_count <= 10) {
edge_intensity_diff.clear();
destroy_edge_point();
while (edge_point.size() < minimum_cadidate_features && edge_thresh > 5) {
edge_intensity_diff.clear();
destroy_edge_point();
locate_edge_points(pupil_image, width, height, cx, cy, dis, angle_step, 0, 2*PI, edge_thresh);
if (edge_point.size() < minimum_cadidate_features) {
edge_thresh -= 1;
}
}
if (edge_thresh <= 5) {
break;
}
first_ep_num = edge_point.size();
for (int i = 0; i < first_ep_num; i++) {
edge = edge_point.at(i);
angle_normal = atan2(cy-edge->y, cx-edge->x);
new_angle_step = angle_step*(edge_thresh*1.0/edge_intensity_diff.at(i));
locate_edge_points(pupil_image, width, height, edge->x, edge->y, dis, new_angle_step, angle_normal,
angle_spread, edge_thresh);
}
loop_count += 1;
edge_mean = get_edge_mean();
if (fabs(edge_mean.x-cx) + fabs(edge_mean.y-cy) < 10)
break;
cx = edge_mean.x;
cy = edge_mean.y;
}
if (loop_count > 10) {
destroy_edge_point();
printf("Error! edge points did not converge in %d iterations!\n", loop_count);
return;
}
if (edge_thresh <= 5) {
destroy_edge_point();
printf("Error! Adaptive threshold is too low!\n");
return;
}
}
void locate_edge_points(UINT8* image, int width, int height, double cx, double cy, int dis, double angle_step, double angle_normal, double angle_spread, int edge_thresh)
{
double angle;
stuDPoint p, *edge;
double dis_cos, dis_sin;
int pixel_value1, pixel_value2;
for (angle = angle_normal-angle_spread/2+0.0001; angle < angle_normal+angle_spread/2; angle += angle_step) {
dis_cos = dis * cos(angle);
dis_sin = dis * sin(angle);
p.x = cx + dis_cos;
p.y = cy + dis_sin;
pixel_value1 = image[(int)(p.y)*width+(int)(p.x)];
while (1) {
p.x += dis_cos;
p.y += dis_sin;
if (p.x < 0 || p.x >= width || p.y < 0 || p.y >= height)
break;
pixel_value2 = image[(int)(p.y)*width+(int)(p.x)];
if (pixel_value2 - pixel_value1 > pupil_edge_thres) {
edge = (stuDPoint*)malloc(sizeof(stuDPoint));
edge->x = p.x - dis_cos/2;
edge->y = p.y - dis_sin/2;
edge_point.push_back(edge);
edge_intensity_diff.push_back(pixel_value2 - pixel_value1);
break;
}
pixel_value1 = pixel_value2;
}
}
}
stuDPoint get_edge_mean()
{
stuDPoint *edge;
int i;
double sumx=0, sumy=0;
stuDPoint edge_mean;
for (i = 0; i < edge_point.size(); i++) {
edge = edge_point.at(i);
sumx += edge->x;
sumy += edge->y;
}
if (edge_point.size() != 0) {
edge_mean.x = sumx / edge_point.size();
edge_mean.y = sumy / edge_point.size();
} else {
edge_mean.x = -1;
edge_mean.y = -1;
}
return edge_mean;
}
void destroy_edge_point()
{
vector <stuDPoint*>::iterator iter;
if (edge_point.size() != 0) {
for (iter = edge_point.begin(); iter != edge_point.end( ) ; iter++ ) {
free(*iter);
}
edge_point.clear();
}
}
//------------ Ransac ellipse fitting -----------//
// Randomly select 5 indeics
void get_5_random_num(int max_num, int* rand_num)
{
int rand_index = 0;
int r;
int i;
bool is_new = 1;
if (max_num == 4) {
for (i = 0; i < 5; i++) {
rand_num[i] = i;
}
return;
}
while (rand_index < 5) {
is_new = 1;
r = (int)((rand()*1.0/RAND_MAX) * max_num);
for (i = 0; i < rand_index; i++) {
if (r == rand_num[i]) {
is_new = 0;
break;
}
}
if (is_new) {
rand_num[rand_index] = r;
rand_index++;
}
}
}
// solve_ellipse
// conic_param[6] is the parameters of a conic {a, b, c, d, e, f}; conic equation: ax^2 + bxy + cy^2 + dx + ey + f = 0;
// ellipse_param[5] is the parameters of an ellipse {ellipse_a, ellipse_b, cx, cy, theta}; a & b is the major or minor axis;
// cx & cy is the ellipse center; theta is the ellipse orientation
bool solve_ellipse(double* conic_param, double* ellipse_param)
{
double a = conic_param[0];
double b = conic_param[1];
double c = conic_param[2];
double d = conic_param[3];
double e = conic_param[4];
double f = conic_param[5];
//get ellipse orientation
double theta = atan2(b, a-c)/2;
//get scaled major/minor axes
double ct = cos(theta);
double st = sin(theta);
double ap = a*ct*ct + b*ct*st + c*st*st;
double cp = a*st*st - b*ct*st + c*ct*ct;
//get translations
double cx = (2*c*d - b*e) / (b*b - 4*a*c);
double cy = (2*a*e - b*d) / (b*b - 4*a*c);
//get scale factor
double val = a*cx*cx + b*cx*cy + c*cy*cy;
double scale_inv = val - f;
if (scale_inv/ap <= 0 || scale_inv/cp <= 0) {
//printf("Error! ellipse parameters are imaginary a=sqrt(%lf), b=sqrt(%lf)\n", scale_inv/ap, scale_inv/cp);
memset(ellipse_param, 0, sizeof(double)*5);
return 0;
}
ellipse_param[0] = sqrt(scale_inv / ap);
ellipse_param[1] = sqrt(scale_inv / cp);
ellipse_param[2] = cx;
ellipse_param[3] = cy;
ellipse_param[4] = theta;
return 1;
}
stuDPoint* normalize_point_set(stuDPoint* point_set, double &dis_scale, stuDPoint &nor_center, int num)
{
double sumx = 0, sumy = 0;
double sumdis = 0;
stuDPoint *edge = point_set;
int i;
for (i = 0; i < num; i++) {
sumx += edge->x;
sumy += edge->y;
sumdis += sqrt((double)(edge->x*edge->x + edge->y*edge->y));
edge++;
}
dis_scale = sqrt((double)2)*num/sumdis;
nor_center.x = sumx*1.0/num;
nor_center.y = sumy*1.0/num;
stuDPoint *edge_point_nor = (stuDPoint*)malloc(sizeof(stuDPoint)*num);
edge = point_set;
for (i = 0; i < num; i++) {
edge_point_nor[i].x = (edge->x - nor_center.x)*dis_scale;
edge_point_nor[i].y = (edge->y - nor_center.y)*dis_scale;
edge++;
}
return edge_point_nor;
}
stuDPoint* normalize_edge_point(double &dis_scale, stuDPoint &nor_center, int ep_num)
{
double sumx = 0, sumy = 0;
double sumdis = 0;
stuDPoint *edge;
int i;
for (i = 0; i < ep_num; i++) {
edge = edge_point.at(i);
sumx += edge->x;
sumy += edge->y;
sumdis += sqrt((double)(edge->x*edge->x + edge->y*edge->y));
}
dis_scale = sqrt((double)2)*ep_num/sumdis;
nor_center.x = sumx*1.0/ep_num;
nor_center.y = sumy*1.0/ep_num;
stuDPoint *edge_point_nor = (stuDPoint*)malloc(sizeof(stuDPoint)*ep_num);
for (i = 0; i < ep_num; i++) {
edge = edge_point.at(i);
edge_point_nor[i].x = (edge->x - nor_center.x)*dis_scale;
edge_point_nor[i].y = (edge->y - nor_center.y)*dis_scale;
}
return edge_point_nor;
}
void denormalize_ellipse_param(double* par, double* normailized_par, double dis_scale, stuDPoint nor_center)
{
par[0] = normailized_par[0] / dis_scale; //major or minor axis
par[1] = normailized_par[1] / dis_scale;
par[2] = normailized_par[2] / dis_scale + nor_center.x; //ellipse center
par[3] = normailized_par[3] / dis_scale + nor_center.y;
}
int* pupil_fitting_inliers(UINT8* pupil_image, int width, int height, int &return_max_inliers_num)
{
int i;
int ep_num = edge_point.size(); //ep stands for edge point
stuDPoint nor_center;
double dis_scale;
int ellipse_point_num = 5; //number of point that needed to fit an ellipse
if (ep_num < ellipse_point_num) {
printf("Error! %d points are not enough to fit ellipse\n", ep_num);
memset(pupil_param, 0, sizeof(pupil_param));
return_max_inliers_num = 0;
return NULL;
}
//Normalization
stuDPoint *edge_point_nor = normalize_edge_point(dis_scale, nor_center, ep_num);
//Ransac
int *inliers_index = (int*)malloc(sizeof(int)*ep_num);
int *max_inliers_index = (int*)malloc(sizeof(int)*ep_num);
int ninliers = 0;
int max_inliers = 0;
int sample_num = 1000; //number of sample
int ransac_count = 0;
double dis_threshold = sqrt(3.84)*dis_scale;
double dis_error;
memset(inliers_index, int(0), sizeof(int)*ep_num);
memset(max_inliers_index, int(0), sizeof(int)*ep_num);
int rand_index[5];
double A[6][6];
int M = 6, N = 6; //M is row; N is column
for (i = 0; i < N; i++) {
A[i][5] = 1;
A[5][i] = 0;
}
double **ppa = (double**)malloc(sizeof(double*)*M);
double **ppu = (double**)malloc(sizeof(double*)*M);
double **ppv = (double**)malloc(sizeof(double*)*N);
for (i = 0; i < M; i++) {
ppa[i] = A[i];
ppu[i] = (double*)malloc(sizeof(double)*N);
}
for (i = 0; i < N; i++) {
ppv[i] = (double*)malloc(sizeof(double)*N);
}
double pd[6];
int min_d_index;
double conic_par[6] = {0};
double ellipse_par[5] = {0};
double best_ellipse_par[5] = {0};
double ratio;
while (sample_num > ransac_count) {
get_5_random_num((ep_num-1), rand_index);
//svd decomposition to solve the ellipse parameter
for (i = 0; i < 5; i++) {
A[i][0] = edge_point_nor[rand_index[i]].x * edge_point_nor[rand_index[i]].x;
A[i][1] = edge_point_nor[rand_index[i]].x * edge_point_nor[rand_index[i]].y;
A[i][2] = edge_point_nor[rand_index[i]].y * edge_point_nor[rand_index[i]].y;
A[i][3] = edge_point_nor[rand_index[i]].x;
A[i][4] = edge_point_nor[rand_index[i]].y;
}
svd(M, N, ppa, ppu, pd, ppv);
min_d_index = 0;
for (i = 1; i < N; i++) {
if (pd[i] < pd[min_d_index])
min_d_index = i;
}
for (i = 0; i < N; i++)
conic_par[i] = ppv[i][min_d_index]; //the column of v that corresponds to the smallest singular value,
//which is the solution of the equations
ninliers = 0;
memset(inliers_index, 0, sizeof(int)*ep_num);
for (i = 0; i < ep_num; i++) {
dis_error = conic_par[0]*edge_point_nor[i].x*edge_point_nor[i].x +
conic_par[1]*edge_point_nor[i].x*edge_point_nor[i].y +
conic_par[2]*edge_point_nor[i].y*edge_point_nor[i].y +
conic_par[3]*edge_point_nor[i].x + conic_par[4]*edge_point_nor[i].y + conic_par[5];
if (fabs(dis_error) < dis_threshold) {
inliers_index[ninliers] = i;
ninliers++;
}
}
if (ninliers > max_inliers) {
if (solve_ellipse(conic_par, ellipse_par)) {
denormalize_ellipse_param(ellipse_par, ellipse_par, dis_scale, nor_center);
ratio = ellipse_par[0] / ellipse_par[1];
if (ellipse_par[2] > 0 && ellipse_par[2] <= width-1 && ellipse_par[3] > 0 && ellipse_par[3] <= height-1 &&
ratio > 0.5 && ratio < 2) {
memcpy(max_inliers_index, inliers_index, sizeof(int)*ep_num);
for (i = 0; i < 5; i++) {
best_ellipse_par[i] = ellipse_par[i];
}
max_inliers = ninliers;
sample_num = (int)(log((double)(1-0.99))/log(1.0-pow(ninliers*1.0/ep_num, 5)));
}
}
}
ransac_count++;
if (ransac_count > 1500) {
printf("Error! ransac_count exceed! ransac break! sample_num=%d, ransac_count=%d\n", sample_num, ransac_count);
break;
}
}
//INFO("ransc end\n");
if (best_ellipse_par[0] > 0 && best_ellipse_par[1] > 0) {
for (i = 0; i < 5; i++) {
pupil_param[i] = best_ellipse_par[i];
}
} else {
memset(pupil_param, 0, sizeof(pupil_param));
max_inliers = 0;
free(max_inliers_index);
max_inliers_index = NULL;
}
for (i = 0; i < M; i++) {
free(ppu[i]);
free(ppv[i]);
}
free(ppu);
free(ppv);
free(ppa);
free(edge_point_nor);
free(inliers_index);
return_max_inliers_num = max_inliers;
return max_inliers_index;
}