This repository has been archived by the owner on Jun 5, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
RF12_T3.cpp
408 lines (349 loc) · 11.8 KB
/
RF12_T3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/// RF12_t3.cpp
// Implementation file for RFM12B library for Teensy 3.0
// 2012: tht https://github.com/tht
#include "RF12_T3.h"
// Init singleton cariable
RF12_T3* RF12_T3::_instance = 0; // init singleton
/*
* drssi_dec_tree[] is an array used to do a binary
* search to get the most accurate dssi value out
* of the RFM12b module. drssi holds the actual value.
* if drssi <=5 then we are still searching in this array
* drssi & B1000 indicate terminated states where getDSSIdB()
* allows to querty the correct values.
*/
struct drssi_dec_t {
uint8_t up;
uint8_t down;
uint8_t threshold;
};
const drssi_dec_t drssi_dec_tree[] = {
/* up down thres*/
/* 0 */ { B1001, B1000, B000 },
/* 1 */ { B0010, B0000, B001 },
/* 2 */ { B1011, B1010, B010 },
/* 3 */ { B0101, B0001, B011 },
/* 4 */ { B1101, B1100, B100 },
/* 5 */ { B1110, B0100, B101 }
};
/**
* reinit(uint8_t id, uint8_t band, uint8_t group, uint8_t rate)
* (Re)initializes the RFM12 module with supplied arguments. It
* actually requests a reset from the RFM12 module and waits until
* it responds back. Use isAvailable() to check if init was successful.
* Mode will be RF_IDLE after successful initialization.
* Params: id: NodeId of this node
* band: Frequency band (see constants in this file)
* group: RFM12 group (second sync byte)
* rate: Datarate to use
* Return: void
*/
int RF12_T3::reinit(uint8_t id, uint8_t band, uint8_t group, uint8_t rate) {
nodeId = id;
groupId= group;
bandId = band;
datarate = rate;
available = 0;
reportBroken = 0;
// configure SPI pins
digitalWriteFast(SCK, LOW);
digitalWriteFast(MOSI, LOW);
digitalWriteFast(SS, HIGH);
pinMode(SCK, OUTPUT);
pinMode(MOSI, OUTPUT);
pinMode(SS, OUTPUT); // is pin 10
// enables and configures SPI module
SIM_SCGC6 |= SIM_SCGC6_SPI0; // enable SPI clock
SPI0_MCR = 0x80004000;
SPCR |= _BV(MSTR);
SPCR |= _BV(SPE);
SPCR &= ~(_BV(DORD)); // MSBFIRST SPI
// 16MHz 16bit transfers on CTAR0
SPI0_CTAR0 = 0xF8010000;
// 2MHz 8bit transfers on CTAR1 (for reading FIFO)
SPI0_CTAR1 = 0x38010002;
// init some values
_index = 0;
buffer[0] = 0; // reset header
buffer[1] = 0; // reset len
// register irq
pinMode(irqLine, INPUT);
attachInterrupt(irqLine, RF12_T3::_handleIrq4, LOW);
// requesting RFM12b reset
rf12_xfer(0xCA82); // enable software reset
rf12_xfer(0xFE00); // do software reset
}
/**
* rf12_xfer(uint16_t data)
* Transmits one 16bit command to the RFM12 module.
* Params: data: Command to send
* Return: From RFM12 module received data
*/
inline uint16_t RF12_T3::rf12_xfer(uint16_t data) {
digitalWriteFast(10, LOW);
SPI0_PUSHR = (1<<26) | data; // send data (clear transfer counter)
while (! SPI0_TCR) ; // loop until transfer is complete
digitalWriteFast(10, HIGH);
return SPI0_POPR;
}
/**
* handleIrq()
* Handles an IRQ request from the RFM12b module.
* Params: none (called from interrupt)
* Return: void
*/
void RF12_T3::handleIrq() {
// check if we really have to do something
if (digitalRead(4) == HIGH)
return;
// reading state
digitalWriteFast(10, LOW); // select RFM12b module
SPI0_PUSHR = (1<<26) | 0x0000; // send data (clear transfer counter)
while (! SPI0_TCR) ; // loop until transfer is complete
uint16_t res = SPI0_POPR;
// fifo full or buffer empty
if (res & 0x8000) {
// =====================================================
// FIFO has a byte to read
if (state == RF_RECV) {
SPI0_PUSHR = (1<<28) | (1<<26); // CTAR1 transfer (slow 8bit), clear transfer counter
while (! SPI0_TCR) ; // loop until transfer is complete
uint8_t data = (uint8_t) SPI0_POPR;
digitalWriteFast(10, HIGH);
// do drssi binary-tree search
if ( drssi < 6 ) { // not yet final value
if ( bitRead(res,8) ) // rssi over threashold?
drssi = drssi_dec_tree[drssi].up;
else
drssi = drssi_dec_tree[drssi].down;
if ( drssi < 6 ) { // not yet final destination
rf12_xfer(0x94A0 | drssi_dec_tree[drssi].threshold);
}
}
// save data to internal buffer
buffer[_index++] = data;
if (_index==1) { // first packet!
initCRC();
CRC_CRC8 = groupId;
CRC_CRC8 = data;
} else if (_index==2) { // second packet (with length)
CRC_CRC8 = data;
} else { // data (or crc)
CRC_CRC8 = data;
afc_offset = ((state & 0x0010)?-1:1) * state&0x000F;
// abort reception if we got a full packet
if (_index > buffer[1] + 3) { // +1 for header, +2 for checksum
disableReceiver();
_recvDone = 1;
rf12_crc = CRC_CRC16;
}
}
// =====================================================
// Buffer needs neyt byte to send
} else {
digitalWriteFast(10, HIGH);
rf12_xfer(0xB800 | _toSend);
// prepare next byte to send
if (state < 0) {
_toSend = buffer[2 + buffer[1] + state++];
CRC_CRC8 = _toSend;
} else {
switch (++state) {
case RF_TXSYN1: _toSend = 0x2D; break;
case RF_TXSYN2: _toSend = groupId;
CRC_CRC8 = _toSend;
state = - (2 + buffer[1]);
break;
case RF_TXCRC1: _toSend = 0xff & (CRC_CRC16>>8); break;
case RF_TXCRC2: _toSend = 0xff & (CRC_CRC16); break;
case RF_TXTAIL1: _toSend = 0xAA; break; // dummy
case RF_TXTAIL2: break; // dummy
case RF_TXDONE: _toSend = 0x99; // dummy, fall through
default: disableTransmitter(); state = RF_IDLE; // make sure we're back on track
}
}
}
} else
digitalWriteFast(10, HIGH); // don't forget to disable CS to RFM module
// =====================================================
// Power-On reset complete, do init now
if (res & 0x4000) {
rf12_xfer(0x80C7 | (bandId << 4)); // configuration settings
rf12_xfer(0x82D9);
rfMode = 0x82D9; rfMode = 0x82D9; // rx enabled, wakeup disabled, lowbat disabled
rf12_xfer(0xA640);
rf12_xfer(0xC600 | datarate);
rf12_xfer(0x94A3);
rf12_xfer(0xC2AC);
rf12_xfer(0xCA83);
rf12_xfer(0xCE00 | groupId); // sync Byte (group id)
rf12_xfer(0xC493);
rf12_xfer(0x9850);
rf12_xfer(0xCC57);
//rf12_xfer(0xE000); // no wakeup timer
rf12_xfer(0xC800);
//rf12_xfer(0xC049); // no lowbat detection
available = 1;
state = RF_IDLE;
}
// =====================================================
// Wakeup-call from RFM12b module
if (res & 0x1000) { // wakeup-call, mark as received and switch off wakeup-timer
wakeup = 1;
rf12_sleep(0);
}
// =====================================================
// FIFO overflow or buffer underrun
if (res & 0x2000) {
if (bitRead(rfMode, 7)) { // we are receiving
resetReceiveBuffer();
disableReceiver();
enableReceiver();
} else { // we are sending
// Resending could jam the air... so just abort sending
// TODO: recheck when sendWait() is implemented to not hang here
disableTransmitter();
}
}
}
/**
* enableReceiver()
* Enables the receiver circuit. Disables transmitter if enabled.
* Also switches internal state to RF_RECV.
* Params: none
* Return: void
*/
void RF12_T3::enableReceiver() {
// init drssi detection tree
drssi = 3;
rf12_xfer(0x94A0 | drssi_dec_tree[drssi].threshold);
// switch RFM12b state
bitSet(rfMode, 7); // enable receiver
bitSet(rfMode, 6); // enable recv. baseband
bitClear(rfMode,5); // disable transmitter
rf12_xfer(rfMode);
state = RF_RECV;
}
/**
* disableReceiver()
* Disables the receiver circuit. Does not touch transmiter.
* Params: none
* Return: void
*/
void RF12_T3::disableReceiver() {
bitClear(rfMode,7);
rf12_xfer(rfMode);
}
/**
* enableTransmitter()
* Enables the transmitter and completely disables receiver. We send
* a dummy 0xCC for clock syncronisation first. RFM module will use an
* interrupt ro request first (real) byte to send.
* Params: none
* Return: void
*/
void RF12_T3::enableTransmitter() {
bitSet(rfMode, 5); // enable transmitter
bitClear(rfMode, 7); // disable receiver
bitClear(rfMode, 6); // disable recv. baseband
rf12_xfer(rfMode);
// prepare first byte (sync) to send and switch to correct state
_toSend = 0xCC;
state = RF_TXPRE;
}
/**
* disableTransmitter()
* Disables the transmitter, does not touch receiver. State is reset to
* RF_IDLE so the next call to recvDone() will enable reception.
* Params: none
* Return: void
*/
void RF12_T3::disableTransmitter() {
bitClear(rfMode, 5); // disable transmitter
rf12_xfer(rfMode);
state = RF_IDLE;
}
/**
* canSend()
* Check if we can send now. It switches off receiver, so a call to
* recvDone() is needed to enable receiving again.
* Params: none
* Return: true if sending is possible/allowed
*/
boolean RF12_T3::canSend() {
if (available & (state == RF_IDLE || state == RF_RECV)) {
disableReceiver();
state = RF_IDLE;
return true;
} else {
return false;
}
}
/**
* sendStart(int hdr)
* Sends an empty packet (only header).
* Params: hdr: Header to send
* Return: void
*/
void RF12_T3::sendStart(uint8_t hdr) {
sendStart(hdr, 0, 0);
}
/**
* sendStart(int hdr, const void *ptr, int len)
* Sends an empty packet (only header).
* Params: hdr: Header to send
* ptr: Pointer to data which is copied to internal memory
* len: Len of data where ptr points to
* Return: void
*/
void RF12_T3::sendStart(uint8_t hdr, const void *ptr, uint8_t len) {
state = RF_IDLE;
buffer[0] = hdr;
buffer[1] = len;
memcpy((void*) &buffer[2], ptr, len);
initCRC();
enableTransmitter();
}
/**
* rf12_sleep(unsigned long m)
* Requests an interrupt from the RFM12 module after this many ms. The interrupts do not
* repeat itself (non periodic). Requesting a new one if another one is still wating clears
* the old one.
* Set to 0 ms to disable RFM12 wakeup.
* Params: m: Time to wait in ms or 0 to disable
* Return: void
*/
inline void RF12_T3::rf12_sleep(unsigned long m) {
// calculate parameters for RFM12 module
// T_wakeup[ms] = m * 2^r
char r=0;
while (m > 255) {
r += 1;
m >>= 1;
}
// Disable old one if present
if (bitRead(rfMode,1)) {
bitClear(rfMode,1);
rf12_xfer(rfMode);
}
// enable wakeup call if we have to
if (m>0) {
bitSet(rfMode,1);
rf12_xfer(rfMode);
// write time to wakeup-register
rf12_xfer(0xE000 | (r<<8) | m);
}
}
/**
* gotWakeup()
* Returns true if wakeup-call was received from RFM12 module and resets itself.
* Params: none
* Return: true if wakeup-call was received
*/
inline boolean RF12_T3::gotWakeup() {
if (wakeup) {
wakeup = 0;
return 1;
}
return 0;
}