-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain_lstm.py
executable file
·212 lines (181 loc) · 8.81 KB
/
train_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#! /usr/bin/env python
import tensorflow as tf
import numpy as np
import os
import time
import datetime
import data_helpers
from lstm import lstm_class
# Parameters
# ==================================================
# Model Hyperparameters
tf.flags.DEFINE_integer("embedding_dim", 300, "Dimensionality of character embedding (default: 300)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularizaion lambda (default: 0.0)")
tf.flags.DEFINE_string("lstm_type", "peephole", "either 'gru', 'basic', or 'peephole'")
tf.flags.DEFINE_integer("hidden_unit", 300, "Number of hidden units in lstm cell")
tf.flags.DEFINE_boolean("non_static", False, "Refine pre-trained embeddings during training")
# Training parameters
tf.flags.DEFINE_integer("hold_out", 300, "Default: 300")
tf.flags.DEFINE_integer("batch_size", 50, "Batch Size")
tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 1, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
# Data parameters
tf.flags.DEFINE_boolean("vn", False, "Use Vietnamese dataset")
tf.flags.DEFINE_string("en_embeddings", "GoogleNews-vectors-negative300.bin", "English pre-trained words file name")
tf.flags.DEFINE_string("vn_embeddings", "vectors-phrase.bin.vn", "Vietnamese pre-trained words file name")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS.batch_size
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.iteritems()):
print("{}={}".format(attr.upper(), value))
print("")
# Data Preparatopn
# ==================================================
# Load data
print("Loading data...")
x_, y_, vocabulary, vocabulary_inv, test_size = data_helpers.load_data(FLAGS.vn)
print("Loading pre-trained vectors...")
trained_vecs = data_helpers.load_trained_vecs(
FLAGS.vn, FLAGS.vn_embeddings, FLAGS.en_embeddings, vocabulary)
# Create embedding lookup table
count = data_helpers.add_unknown_words(trained_vecs, vocabulary)
embedding_mat = [trained_vecs[p] for i, p in enumerate(vocabulary_inv)]
embedding_mat = np.array(embedding_mat, dtype = np.float32)
# Randomly shuffle data
x, x_test = x_[:-test_size], x_[-test_size:]
y, y_test = y_[:-test_size], y_[-test_size:]
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]
if FLAGS.hold_out == 0:
x_train = x_shuffled
y_train = y_shuffled
x_dev = x_test
y_dev = y_test
else:
# Split train/hold-out/test set
x_train, x_dev = x_shuffled[:-FLAGS.hold_out], x_shuffled[-FLAGS.hold_out:]
y_train, y_dev = y_shuffled[:-FLAGS.hold_out], y_shuffled[-FLAGS.hold_out:]
print("Vocabulary Size: {:d}".format(len(vocabulary)))
print("Pre-trained words: {:d}".format(count))
print("Train/Hold-out/Test split: {:d}/{:d}/{:d}".format(len(y_train), len(y_dev), len(y_test)))
# Training
# ==================================================
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
lstm = lstm_class(
embedding_mat = embedding_mat,
non_static = FLAGS.non_static,
lstm_type = FLAGS.lstm_type,
hidden_unit = FLAGS.hidden_unit,
sequence_length=x_train.shape[1],
num_classes=y.shape[1],
vocab_size=len(vocabulary),
embedding_size=FLAGS.embedding_dim,
l2_reg_lambda=FLAGS.l2_reg_lambda)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.RMSPropOptimizer(1e-3, decay = 0.9)
grads_and_vars = optimizer.compute_gradients(lstm.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.merge_summary(grad_summaries)
# Output directory for models and summaries
timestamp = str(int(time.time()))
run_folder = 'lstm_run' + int(FLAGS.vn)*'_vn'
out_dir = os.path.abspath(os.path.join(os.path.curdir, run_folder, timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.scalar_summary("loss", lstm.loss)
acc_summary = tf.scalar_summary("accuracy", lstm.accuracy)
# Train Summaries
train_summary_op = tf.merge_summary([loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.train.SummaryWriter(train_summary_dir, sess.graph_def)
# Dev summaries
dev_summary_op = tf.merge_summary([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.train.SummaryWriter(dev_summary_dir, sess.graph_def)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.all_variables())
# Initialize all variables
sess.run(tf.initialize_all_variables())
def real_len(xb):
return [np.argmin(i + [0]) for i in xb]
def train_step(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {
lstm.input_x: x_batch,
lstm.input_y: y_batch,
lstm.dropout_keep_prob: FLAGS.dropout_keep_prob,
lstm.batch_size: FLAGS.batch_size,
lstm.real_len: real_len(x_batch)
}
_, step, summaries, loss, accuracy = sess.run(
[train_op, global_step, train_summary_op, lstm.loss, lstm.accuracy],
feed_dict)
lstm.W = tf.clip_by_norm(lstm.W, 3)
time_str = datetime.datetime.now().isoformat()
print("TRAIN step {}, loss {:g}, acc {:g}".format(step, loss, accuracy))
train_summary_writer.add_summary(summaries, step)
def dev_step(x_batch, y_batch, writer=None):
"""
Evaluates model on a dev set
"""
feed_dict = {
lstm.input_x: x_batch,
lstm.input_y: y_batch,
lstm.dropout_keep_prob: 1.0,
lstm.batch_size: len(x_batch),
lstm.real_len: real_len(x_batch)
}
step, summaries, loss, accuracy = sess.run(
[global_step, dev_summary_op, lstm.loss, lstm.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("VALID step {}, loss {:g}, acc {:g}".format(step, loss, accuracy))
if writer:
writer.add_summary(summaries, step)
return accuracy, loss
# Generate batches
batches = data_helpers.batch_iter(
zip(x_train, y_train), FLAGS.batch_size, FLAGS.num_epochs)
max_acc = 0
best_at_step = 0
for batch in batches:
x_batch, y_batch = zip(*batch)
train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
acc, loss = dev_step(x_dev, y_dev, writer=dev_summary_writer)
if acc >= max_acc:
if acc >= max_acc: max_acc = acc
best_at_step = current_step
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
if current_step % FLAGS.checkpoint_every == 0:
print 'Best of valid = {}, at step {}'.format(max_acc, best_at_step)
saver.restore(sess, checkpoint_prefix + '-' + str(best_at_step))
print 'Finish training. On test set:'
acc, loss = dev_step(x_test, y_test, writer = None)