-
Notifications
You must be signed in to change notification settings - Fork 43
/
main.py
300 lines (288 loc) · 11.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import argparse
import os
from train.train import train
from accelerate.logging import get_logger
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Main script for training RDT.")
parser.add_argument(
"--config_path",
type=str,
default="configs/base.yaml",
help="Path to the configuration file. Default is `configs/base.yaml`.",
)
parser.add_argument(
"--deepspeed",
type=str,
default=None,
help="Enable DeepSpeed and pass the path to its config file or an already initialized DeepSpeed config dictionary",
)
parser.add_argument(
"--pretrained_text_encoder_name_or_path",
type=str,
default=None,
help="Pretrained text encoder name or path if not the same as model_name",
)
parser.add_argument(
"--pretrained_vision_encoder_name_or_path",
type=str,
default=None,
help="Pretrained vision encoder name or path if not the same as model_name",
)
parser.add_argument(
"--output_dir",
type=str,
default="checkpoints",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--load_from_hdf5",
action="store_true",
default=False,
help=(
"Whether to load the dataset directly from HDF5 files. "
"If False, the dataset will be loaded using producer-consumer pattern, "
"where the producer reads TFRecords and saves them to buffer, and the consumer reads from buffer."
)
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=8, help="Batch size (per device) for the sampling dataloader."
)
parser.add_argument(
"--num_sample_batches", type=int, default=2, help="Number of batches to sample from the dataset."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_period",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
"instructions."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=(
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
" for more details"
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_period`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
help=(
"Path or name of a pretrained checkpoint to load the model from.\n",
" This can be either:\n"
" - a string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co, e.g., `robotics-diffusion-transformer/rdt-1b`,\n"
" - a path to a *directory* containing model weights saved using [`~RDTRunner.save_pretrained`] method, e.g., `./my_model_directory/`.\n"
" - a path to model checkpoint (*.pt), .e.g, `my_model_directory/checkpoint-10000/pytorch_model/mp_rank_00_model_states.pt`"
" - `None` if you are randomly initializing model using configuration at `config_path`."
)
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--cond_mask_prob",
type=float,
default=0.1,
help=(
"The probability to randomly mask the conditions (except states) during training. "
"If set to 0, the conditions are not masked."
),
)
parser.add_argument(
"--cam_ext_mask_prob",
type=float,
default=-1.0,
help=(
"The probability to randomly mask the external camera image during training. "
"If set to < 0, the external camera image is masked with the probability of `cond_mask_prob`."
),
)
parser.add_argument(
"--state_noise_snr",
type=float,
default=None,
help=(
"The signal-to-noise ratio (SNR, unit: dB) for adding noise to the states. "
"Default is None, which means no noise is added."
),
)
parser.add_argument(
"--image_aug",
action="store_true",
default=False,
help="Whether or not to apply image augmentation (ColorJitter, blur, noise, etc) to the input images.",
)
parser.add_argument(
"--precomp_lang_embed",
action="store_true",
default=False,
help="Whether or not to use precomputed language embeddings.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--alpha", type=float, default=0.9, help="The moving average coefficient for each dataset's loss.")
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--sample_period",
type=int,
default=-1,
help=(
"Run sampling every X steps. During the sampling phase, the model will sample a trajectory"
" and report the error between the sampled trajectory and groud-truth trajectory"
" in the training batch."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--set_grads_to_none",
action="store_true",
help=(
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
" behaviors, so disable this argument if it causes any problems. More info:"
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
),
)
parser.add_argument('--dataset_type',
type=str,
default="pretrain",
required=False,
help="Whether to load the pretrain dataset or finetune dataset."
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
if __name__ == "__main__":
logger = get_logger(__name__)
args = parse_args()
train(args, logger)